Scalable M ulti-Relational Association Mining

Amanda Clare
Department of Computer Science,
University of Wales Aberystwyth,

Aberystwyth, SY 23 3DB, UK
afc@aber.ac.uk

Abstract

We propose the new RADAR technique for multi-
relational data mining. This permits the mining of very
large collectionsand provides a new techniquefor discover-
ing multi-relational associations. Results show that RADAR
isreliable and scalable for mining a large yeast homology
collection, and that it does not have the main-memory scal-
ability constraints of the Farmer and Warmr tools.

1. Introduction

Large collections of multi-relational data present sig-
nificant new challenges to data mining. These challenges
are reflected in the annual KDD Cup competition, which
involved relational datasets in 2001 and 2002, and net-
work mining in 2003. The July 2003 edition of the ACM
SIGKDD Explorations is devoted to position papers out-
lining the current frontiers in multi-relational data min-
ing. Similar problems exist in bioinformatics databases —
such as those at MIPS® — that provide integrated data on
a genome-wide scale for whole organisms, with multiple
cross references to other databases.

The vast majority of association mining algorithms are
designed for single table, propositional datasets. We pro-
pose a novel technique for multi-relational association min-
ing that permits efficient and scalable discovery of relation-
ships. To our knowledge, the only existing multi-relational
association mining algorithms are upgrades of Apriori [1]
and, with the field in its infancy, there is much scope for
improving the scalability of these solutions. Our technique
uses an inverted index, a largely disk-based search structure
that is used to support querying in all practical Information
Retrieval systems and web search engines.

*This work carried out at and supported by the School of Computer
Science and Information Technology a RMIT University.
1See: http:// m ps. gsf. de/

Hugh E. Williams
School of Computer Science and Information Technol ogy,
RMIT University, GPO Box 2476V,

Nicholas Lester

Melbourne, Australia 3001.
{hugh,nml} @cs.rmit.edu.au

2. Inverted | ndexes

An inverted index is a well-known structure used in
all practical text retrieval systems [8]. It consists of an
in-memory (or partially in-memory) search structure that
stores the vocabulary of searchable terms, and on-disk post-
ingsthat store, for each term, the location of that term in the
collection. In practice, the vocabulary is typically the words
that occur in the collection [8].

Using the notation of Zobel and Moffat [10], each term
t has postings < fq,:,d >, where fz; is the frequency f
of term ¢ in document d. Consider an example for the term
“mining” that occurs in four documents:

<2,11> <1,19> <1,72> < 2,107 >

This postings list shows that the word “mining” occurs
twice in document 11, once in document 19, once in docu-
ment 72, and twice in document 107. The documents them-
selves are ordinally numbered, and a mapping table asso-
ciates each document number to its location on disk. De-
spite its simplicity, this inverted index structure is sufficient
to support the popular ranked query mode that is used by
most search engine users.

The organisation, compression, and processing of post-
ings lists is crucial to retrieval system performance. Com-
pression is important for three reasons: first, a compressed
representation requires less storage space than an uncom-
pressed one; second, a retrieval system is faster when com-
pression is used, since the cost of transferring compressed
lists and decompressing them is typically much less than the
cost of transferring uncompressed data; and, last, caching
is improved because more lists fit into main-memory than
when uncompressed lists are used. Scholer et al. [7] re-
cently showed that compression of postings lists more than
halves query evaluation times than when no compression is
used.

3. Multi-Relational Association Mining

The first mining technique to find associations in multi-
table relational data was Warmr [4]. Warmr is a first-
order upgrade of Apriori, with the additional introduction
of a user-defined language bias to restrict the search space.
Blockeel et al. [2] have been investigating enhancements —
such as query packs — to the underlying Prolog compiler
to address efficiency issues. They have also implemented
techniques to allow the user to limit the amount of data re-
quired to be loaded into main-memory. With Warmr, the
user has the full power of the Prolog programming language
for specifying the data and background knowledge.

PolyFARM [3] was based on the ideas of Warmr and
written for distribution on a Beowulf cluster by partition-
ing the data to be counted. Unfortunately, although the size
of the database is reduced by partitioning, the size of the
candidate associations held in main-memory can grow im-
practically large.

Nijssen and Kok’s Farmer [6] is a new multi-relational
mining technique, with a running time that is an order
of magnitude improvement over Warmr; indeed, on small
data sets, Farmer can be astonishingly fast. However, they
still require that all data is available in main-memory — a
still significant problem for large datasets — and the main-
memory use increases steadily throughout each search.

4. RADAR

We propose RADAR, the Relational Association
Datamining AlgoRithm?. RADAR is the first multi-
relational association mining algorithm that uses com-
pressed inverted indexing techniques to provide a scalable
solution for mining large databases.

Our aim is to count all frequent associations in a
database. We use the language of first order logic to rep-
resent the associations. A frequent association is a con-
junction or set of atoms that occurs with at least the min-
imum support frequency in the database [4]. For example,
“a chardonnay wine that is made by an Australian grower”
is represented by the association:

wine(W) A chardonnay(W) A grower(W, G) A australian(G)

Inspired by the Eclat algorithm [9], we propose to mine
these frequent associations by flattening the database, build-
ing an inverted index of the flattened database, and repeat-
edly joining postings lists.

In a multi-table relational database, we must decide
which field in which table is our main key or notion of
transaction, that is, what we are counting. For example,
in a database representing wines, retailers, and growers, we

2The RADAR software and sample databases are available from
http://www.aber.ac.uk/compsci/Research/bio/dss/radar/

Figure 1 Five tables representing molecules by atoms and
bonds.

Bond At om Ri ng
ring_id
atoml_j g — atlom_idd atom.id ™ ring_id
aton®_i mol _i ringtype
bondt ype el enent .
quant a mol _i d
char ge activity
Mol ecul e

Figure 2 Example of the two-column flattened database
with keys. For example, line 2 describes a double bond in
mol 12 between atoms 10 and 11.

Keys (Arguments) Attributes (Predicate Symbols)

m12 inactive

ml2, al0, all bond_double

m12, al0 elem_carbon, quanta_27, charge_medium
m12, all, al2 bond_double

ml2, all, al3 bond_single

m12, all elem_carbon, quanta_22, charge_medium

m12, r47, al0 ring_benzene
ml2, r47, all ring_benzene
m12, r47, al2 ring_benzene

must decide if we are interested in counting the number
of Australian growers that make chardonnay wines, or the
number of chardonnay wines that are made by Australian
growers. We refer to this field as the COUNTKEY, so as to
distinguish it from the common notion of a database key
field.

To prepare for indexing, the database is flattened into a
single table with a two-column format. The first column
stores the database keys (which represent the arguments to
the predicates), and the second column stores the database
items, that is, descriptive attributes (which represent the
predicate names). We refer to these as keys and predicate
symbols respectively. Each row of the flattened database
can hold multiple keys and multiple predicate symbols.

The attributes in a simple multi-table relational database
describing molecules represented by bonds and atoms are
shown in Figure 1. Selected flattened rows from this
database are shown in Figure 2. Flattening can be made
more or less explicit depending on the application require-
ments.

Keys are used to form the arguments to the predicates.
For example, if grower(Wine, Grower) is to be a possible
atom in associations, then any row in the flattened database
that contains an instance of the grower term in the second
column must always have both Wine and Grower keys listed
in the first column of that row.

To create an inverted index for the flattened database, we
number each row sequentially and use these numbers as the
document numbers. All terms within a row are indexed, that

Figure 3 A section of the inverted index of the flattened
database from Figure 2. For compactness, the postings list
show only document numbers; we have omitted fg ;.

Term (t) Postings list (d1 ... dy+)
inactive 1
bond_double 2,4
bond_single 5

elem_carbon 3,6
ring_benzene 7,8,9

quanta_22 6
ml12 1,2,3,45,6,7,8,9
alo 2,37
all 245,68

is, both keys and attributes. A section of the inverted index
for Figure 2 is shown in Figure 3.

To mine the data, the user provides the flattened database
and a language bias (the set of factors that influence and
direct the search). In our case, this is a list of the COUN-
TKEYS, a list of all the predicates for use in associations, the
types and modes of their arguments, and other constraints.
Associations are then generated depth-first.

All arguments to the predicates in an association are vari-
ables that can be satisfied by particular database keys. To
count how frequently an association appears in the database
— with respect to the COUNTKEY — we need to test
whether, for each possible COUNTKEY, there is a set of
keys that satisfy this relationship. This means that when we
have multi-relational data we cannot simply intersect post-
ings lists for predicates that appear within the same associa-
tion because we are seeking to identify predicates that share
the correct set of keys that hold the relationships between
the predicates. The algorithm for counting associations us-
ing our compressed inverted index is shown in Figure 4.

5. Results

We present results of using RADAR, Warmr, and Farmer.
All measurements were carried on a 1.66 GHz AMD
Athlon-based workstation running Linux with 2 GB of
main-memory. We used two small collections — for which
RADAR is not optimised, but that are well-known and well-
suited to the other schemes — and a large collection that
illustrates the scalability of RADAR. MUTA is a well-
known mutagenesis dataset [5], consisting of descriptions
of molecules, including their atoms, bonds, and ring struc-
tures. KbD2002 is the collection used in Task 2 of the KDD
2002 Cup competition®, that describes yeast proteins and
their interactions. YEASTHOM is a large collection” that de-

3See: http://www.biostat.wisc.edu/~craven/kddcup/
“4http://www.aber.ac.uk/compsci/Research/bio/dss/yeastdatal

Figure4: Algorithm for counting an association

function count assoc(association)
v1..vn, < fetch postings lists for each predicate p1..pn in
association
foreach countkey in countkeys do
ck_postings <« fetch postings list for countkey
join ck_postings with each appropriate v;
if all v; are non-empty then
if other args exist then
if doargs(1,v1..vn,association) then
total++
else
total++
return total

function doar gs(argnum, v ..v,, association)
docs < fi nd shortest docs list amongst appropriate predicates
foreach doc in docs do
key <+ key of appropriate type for argnum from doc
k_postings <« fetch postings list for key
join k_postings with each appropriate v;
if all v; are non-empty then
if other args exist then
if doargs(argnum + 1,v1..v,, association) then
return true
else
return true
return false

scribes homologous relationships between yeast genes and
proteins in the SwissProt database.

We compared RADAR to Warmr (version ACE 1.2.6) and
Farmer (2003). A fair, direct comparison is not straightfor-
ward as each algorithm has its own distinct properties. In
particular, Farmer does not allow a limit on the length of
the association, but only on the maximum use of each in-
dividual predicate. This means that we cannot stop Farmer
from finding more, longer associations than the other algo-
rithms.

Table 1 shows the results of our experiments. The results
for MmuTA and KDD2002 illustrate the general properties of
the schemes: RADAR uses 34 Mb of main-memory for both
collections, while the memory use of the other schemes
varies significantly with the number of discovered associ-
ations (from 25 to 119 Mb for Warmr, and from 387 to
11 Mb for Farmer). Constant memory use comes at a price
for small collections: RADAR is two to three times slower
than the other schemes on the MUTA task, and unacceptably
slow on the KbD2002 task compared to the fast Farmer.

The results for YEASTHOM illustrate the advantages of
RADAR, and the disadvantages of the other approaches.
RADAR is highly scalable: despite the almost thousand-fold
increase in data size from Kkbb2002 to YEASTHOM, main-
memory use only increases from 34 Mb to 56 Mb. Farmer
— which is impressive on small datasets — is unsuitable for
this task: main-memory use increases steadily throughout
the lifetime of the task, since it holds the database and as-

Data Algorithm Data size Maximum Memory Time Associations
Original Compiled Use (Mb) Found
Warmr 823 kb 1,292 kb 25 7.8 mins 2,756
MUTA Farmer 823 kb — 387 10.9 mins 95,715
RADAR 596 kb 526 kb 34 25.0 mins 12,530
Warmr 1,407kb 1,556 kb 119 31.1 mins 7,523
KDD2002 Farmer 1,407 kb — 11 0.1 mins 20,359
RADAR 1,023 kb 418 kb 34 361.0 mins 9,130
Warmr 841 Mb 880 Mb 800 25 days 7,712*
YEASTHOM Farmer 1,465 Mb — 1,254 18 days 698,974
RADAR 1,565 Mb 163 Mb 56 25 days 34,782*

Table 1. Experiments on the MUTA, KDD2002 and YEASTHOM collections. For MUTA, support = 20
molecules (10.6%), max. assoc. length = 3 predicates (excluding mol(X)). Farmer continued to find
associations to length 11. For kbb2002, support =20 ORFs (0.84%), max. assoc. length = 3 predicates
(excluding orf(X)). Farmer continued to find associations to length 8. For YEASTHOM, support = 20
ORFs (0.31%), max. assoc. length = 3 predicates (excluding orf(X)). Italicised figures indicate that
the algorithm was still running. Farmer continued to find associations to length 7 but stopped before
completion due to main memory exhaustion. Warmr’s maximum memory use was set to 800 Mb.

sociations in memory. Indeed, after 18 days, main-memory
was exhausted. Warmr processes associations in packs that
group together common subparts for faster counting. This
means that no results are given until a whole level is com-
plete. For the YEASTHOM collection, associations of length
two were produced after about six hours, and then the sys-
tem gave no further output for several weeks.

RADAR is structured — similarly to Farmer — as an any-
time algorithm that produces continuous output. Further,
RADAR can be seeded with an association, so that the appli-
cation can be restarted at any time. This aspect is useful for
large-scale mining problems that run for weeks.

6. Conclusion

Large multi-relational collections are the next frontier
for data mining. In this paper we have shown how com-
pressed inverted indexes used in text retrieval systems can
be adapted for multi-relational data mining. Our technique,
RADAR, is both scalable and reliable on large amounts of
data. It produces output continuously, with the option of
stopping and resuming the mining process later. For small
datasets — for which RADAR is not designed — the Warmr
and Farmer techniques should be used in preference.

Acknowledgements

This work was supported by the Australian Research
Council.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules in large databases. In 20th International Con-
ference on Very Large Databases (VLDB 94), 1994.

[2] H. Blockeel et al. Improving the efficiency of Inductive
Logic Programming through the use of query packs. Journal

of Artificial Intelligence Research, 16:135-166, 2002.

[3] A.Clare and R. D. King. Data mining the yeast genome in
a lazy functional language. In Practical Aspects of Declar-
ative Languages (PADL’03), 2003.
L. Dehaspe. Frequent Pattern Discovery in First Order
Logic. PhD thesis, Department of Computer Science,
Katholieke Universiteit Leuven, 1998.
R. King, S. Muggleton, A. Srinivasan, and M. Sternberg.
Structure-activity relationships derived by machine learning.
Proc. Nat. Acad. Sci. USA, 93:438-442, 1996.
S. Nijssen and J. N. Kok. Efficient frequent query discovery
in FARMER. In 13th International Conference on Inductive
Logic Programming (ILP 2003), 2003.
F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. Com-
pression of inverted indexes for fast query evaluation. In
K. Jarvelin, M. Beaulieu, R. Baeza-Yates, and S. H. Myaeng,
editors, Proc. ACM-SIGIR International Conference on Re-
search and Development in Information Retrieval, pages
222-229, Tampere, Finland, 2002.
I. Witten, A. Moffat, and T. Bell. Managing Gigabytes:
Compressing and Indexing Documents and Images. Morgan
Kaufmann Publishers, Los Altos, CA 94022, USA, second
edition, 1999.
M. J. Zaki. Scalable algorithms for association mining.
IEEE Transactions on Knowledge and Data Engineering,
12(3):372-390, 2000.
[10] J. Zobel and A. Moffat. Exploring the similarity space. ACM

SIGIR Forum, 32(1):18-34, 1998.

[4]

5]

[6]

[7]

(8]

(9]

