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Abstract. This document provides supplementary online material for
the paper titled “Evolutionary coordination system for fixed-wing com-
munications unmanned aerial vehicles” recently submitted to TAROS
2014. It mainly focuses on critical system components, namely the aerial
vehicles kinematics model, link budget management and also addresses
the issue of time synchronisation and algorithmic flow.

1 System components

In this section, two key components are described; a) the kinematics model that
dictates the manoeuvrability of the aerial vehicles followed by b) the mathe-
matical model that is used to measure the power consumption for the provided
communication network.

1.1 Kinematics model

An aerial vehicle is treated as a point object in three-dimensional space with
an associated direction vector. At each time step, the position of an aerial ve-
hicle is defined by the latitude, longitude, altitude and heading (φc, λc, hc, θc)
in a geographic coordination system. Preferably, a fixed-wing aerial vehicle flies
according to a 6DOF model of several restrictions, ranging from weight and
drag forces to atmospheric phenomena, that affect its motion. However, as this
work focuses on the coordination of the group of aerial vehicles with respect
to the communication network, a simplified decoupled kinematics model based
on simple turns is considered for the restrictions of both horizontal and vertical
motions.
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(a) (b)

Fig. 1. (a) Horizontal motion; (b) Vertical motion.

Horizontal and vertical motions: For the horizontal flight of an aerial vehicle
equal opposing lift L and weight W forces are required (shown in figure 1b).
A centripetal force F is subsequently required such that it will move at the
horizontal and/or vertical planes. The wing’s load factor of such a model is
defined as the ratio n = L

W , with n = 1 for horizontal (level) and n>1 for
vertical (pulling up) flights, respectively. For a level flight with a horizontal
turn, the wing’s load factor is calculated by considering the following equations
(dynamics depicted in figure 1b, right):

W = L cosβ (1)

L sinβ = m
u2

r
(2)

n =
L

W
=

L

L cosβ
=

1

cosβ
= secβ (3)

with β being the desired bank angle, r the turn radius of the horizontal turn, m
the mass and g the acceleration gravity (with W = mg). The centripetal force
F is now written as

F =
√
L2 −W 2 =

√
(nW )2 −W 2 = W

√
n2 − 1 (4)

notice that as W is mass m times the acceleration gravity g, the previous equa-
tion can be expanded to

F = mg
√
n2 − 1 (5)

combining equations 1 and 2, the bank angle is written as

tanβ =
1

g
∗ u

2

r
(6)

from that, the turn radius r is initially expressed as

r =
u2

g

1

tanβ
(7)
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The trigonometric equivalence secβ = 1 + tan2 β allows the following expan-
sion to the turn radius equation

tanβ =
√

secβ − 1 =

√√√√( 1

cosβ

)2

− 1 =
√
n2 − 1 (8)

now, equation 7 is further expanded to

r =
1

g

u2√
n2 − 1

(9)

Relating the rate of turn in a horizontal plane to the velocity u and turn
radius r, and combined with equation 9, the following rate of turn is formed

θ̇ =
u

r
=
g
√
n2 − 1

u
(10)

thus,

θ̇ =
∆θ

∆t
=
g
√
n2 − 1

u
(11)

A higher bank angle generates a higher wing’s load factor, which ultimately
creates a higher centripetal force that allows a tight turn to be performed.

Furthermore, the new heading of the aerial vehicle after a time step ∆t of a
horizontal manoeuvre is written as

θ(t+∆t) = θt +∆θ = θt + (θ̇∆t) (12)

and the distance travelled within ∆t is calculated by

∆d = v ∗∆t (13)

The new latitude φn and longitude λn in ∆t can be estimated using spherical
trigonometry as follows

φ(t+∆t) = arcsin
(

sin(φt) cos
(∆d
R

)
+ cos(φt) sin

(∆d
R

)
cos(θt)

)
(14)

λ(t+∆t) = λt + arctan
(

sin(θt) sin
(∆d
R

)
cos(φt),

cos
(∆d
R

)
− sin(φt sinφ(t+∆t))

) (15)

where R is Earth’s radius.

Similar methods are adopted for the vertical motion. The rate of climb and
descent angle χ, as shown in figure 1a, is expressed by
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χ̇ =
∆χ

∆t
=
g(n− 1)

u
(16)

For a time step ∆t the new climb or descent angle of the aerial vehicleat time
t+∆t, χ(t+∆t) is estimated by adding to the current χt, as shown by

χ(t+∆t) = χt +∆χ (17)

and is constrained to the maximum climb and descent angle of the aerial vehi-
cle based on its mechanical characteristics. Therefore, at every ∆t the altitude
change is expressed by

∆d = (u∆t)× tan(χ(t+∆t)) (18)

For security as well as reasons regarding practical constraints such as alti-
tude ceilings, airspace limitations or terrain avoidance criteria, the kinematics
model is designed to allow flying within a pre-defined flying corridor. Therefore,
the model denies altitude additions or subtractions in case the maximum or
minimum permitted altitude is reached.

Manoeuvres: An aerial vehicle may either perform a turn circle manoeuvre
with a tight bank angle in order to keep its current position, or implement a
manoeuvre solution generated by the EA. Taking inspiration from the Dubins
curves and paths [1], when implemented a manoeuvre solution will generate a
trajectory consisting of three segments, as depicted in figure 2. Each segment
can be a straight line, turn left or turn right curve, depending on the given bank
angle.

Fig. 2. One manoeuvre of three segments of different duration and bank angles, be-
tween the starting point A and finishing point B. Direction of flying is dictated by the
bank angle.

The EA is free to select the duration for any of the segments as long as the
overall remains equal to one revolution time of a turn circle manoeuvre. This
strategy ensures synchronisation between the aerial vehicles. With a tighter bank
angle of 75 degrees and a constant speed of 110 knots, one revolution time is
approximately 6 seconds. The aerial vehicles perform 2 turn circle manoeuvres
before they are allowed to implement the latest generated solution from the
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EA. Obviously time is an important aspect of the system as the EA runs on-
line. This time window ensures that the artificial evolution will have reached
a satisfactory result, while at the same time the aerial vehicles will fly in a
controlled and synchronized way, keeping their previous formation. Furthermore,
the time window sure that the aerial vehicles will have enough time to exchange
fresh GPS data and ultimately communicate the resulting solution on time.

1.2 Link budget

Communication is achieved by maintaining communication links between the
aerial backbone and as many ground-based vehicles as possible. The communi-
cation links are treated independently and a transmission is considered successful
when the transmitter is able to feed its antenna with enough power, such that it
satisfies the desirable quality requirements. It is assumed that aerial vehicles are
equipped with two radio antennae. One isotropic able to transmit to all direc-
tions and a horn-shaped one able to directionally cover an area on the ground.
It is also assumed that all vehicles are equipped by a Global Positioning System
(GPS) and can broadcast information about their current position and direc-
tionality at a reasonable interval (default 3 seconds). In this section, focus is
primarily given to the communication between aerial vehicles and ground-based
vehicles using the former horn-shaped antennae, as it dictates the effectiveness
of the communication coverage of the mission and the power consumption of a
flying mission.

No matter what the modulation and demodulation scheme is applied at the
higher protocol levels, a link is considered of a good quality if the ratio of the
energy per bit of information Eb to the thermal noise in 1 Hz bandwidth N0

(normalized signal to noise ratio Eb/N0) is maintained. The transmitting power
Pt that an aerial vehicle is required to feed to its horn-shaped antenna, in order
to cover a ground-based vehicle in distance d is expressed by the following version
of Friis equation

Pt = p× d2Rb
Eb
N0

1

GrGt

(4πf

c

)2
TsysK (19)

– Rb is the desired data rate on the link (bit/s),

– Eb/N0 target ratio of energy in one bit to the noise in 1 Hz,

– Gr receiver’s antenna gain (assuming omnidirectional),

– Gt transmitter’s antenna gain equal to 2η
1−cos(HPBW /2)

, where η and HPBW

are the efficiency and the half-power beamwidth angle of the horn-shape
antenna,

– Tsys the total system noise temperature,

– K is the Boltzmann K constant,

– p is coverage profile (will be explained below), and

– d is the slant range defining the distance between the aerial vehicle and the
ground-based vehicle on the ground
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Here, most of the terms are known and remain constant during the mission. In
order for a ground-based vehicle to be covered, it needs to lie within the footprint
of at least one aerial vehicle.

Fig. 3. Slant range d and angle h of a communication link.

As shown in figure 3, a footprint is determined by the altitude of the aerial
vehicle as well as its antenna’s half-power beamwidth angle. The higher the aerial
vehicle flies, the wider its footprint is on the ground, the greater the area covered.
The slant angle h of the ground-based vehicle with respect to the aerial vehicle is
calculated by applying spherical trigonometry (see below) on the available GPS
data that each network participant broadcasts. The following piecewise function
is then used to decide weather a ground-based vehicle lies within the footprint.

L(p) =

{
1 : h <HPBW /2
0 : h ≥HPBW /2

The longer the distance between the transmitter and the receiver, the higher the
signal power required to support the communication. In terms of equations, lets
consider the scenario where an aerial vehicle is transmitting to a ground-based
vehicle.

Knowing R, Earth’s radius, the distances of the transmitting antenna Tx
and the receiving antenna Rx from the centre of the Earth are found by

Tx = R+ htx, Rx = R+ hrx (20)

where htx and hrx are the altitudes of the aerial vehicle and ground-based vehicle
respectively. The slant range d for the equation 19 is therefore found as

d =
√
Tx2 +Rx2 − 2 cos(a)TxRx (21)

subsequently the slant angle h, as depicted in figure 3, required in order to
estimate the profile p value for the equation 19 is calculated as

h = arcsin

(
Tx

d
sin(a)

)
(22)

with a being the central angle (figure 4), calculated by
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a = arccos
(

sin(Txφ) sin(Rxφ) + cos(Txφ) cos(Rxφ) cos(Rxλ − Txλ)
)

(23)

Fig. 4. Slant range d and angle h of a communication link wrt. the central angle a.
Notice that the system allows non-zero altitudes for the ground-based vehicles.

2 Time synchronisation and algorithm flow

The concept of time and time synchronisation plays a important role in the
system. As mentioned above, the aerial vehicles are allowed to perform two
types of manoeuvres; i) a turn circle manoeuvre of a fixed bank angle, and ii)
the resulting evolved manoeuvre generated by the EA decision unit.

As the system does not consider noise at the current, abstract stage (e.g.,
wind force and variations to cruising speed), an aerial vehicle is expected to
perform perfect circles and always reach the same final latitude, longitude, and
altitude when completing a revolution. In terms of a EA generated manoeuvres,
all aerial vehicles are expected to complete their flying at an equal time, due
to the Dubins manoeuvres’ equal durations. Since the resulting decision that
dictates the next move is communicated from the master aerial vehicle to the rest
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Fig. 5. Process flow for a master aerial vehicle.

of the group using the network, it is understood that there are delays that may
affect the transmissions, such that not all of the aerial vehicles will be informed
on time. This brings a synchronisation problem which is addressed by increasing
the number of revolutions required before a Dubins path is implemented by the
aerial vehicles. The significance of this rule is two-fold. Not only it allows all aerial
vehicles to successfully receive the next manoeuvre information, depending on
the number of repeated revolutions set, it also ensures that the EA has enough
time to reach a solution.

After solving the time synchronisation issues the EA is able to run in par-
allel with the rest of the controller, which is responsible for keeping the aerial
vehicle flying in order to complete its previous manoeuvre, either a turn circle
or a Dubins manoeuvre. Figure 5 depicts the algorithm flow at the master aerial
vehicle. At every time step dt, the algorithm takes a step further to the previous
unfinished manoeuvre as long as it is not completed. If no Dubins manoeuvre
is available and a turn circle manoeuvre is already performed, the master aerial
vehicle interacts with the EA decision unit in order to receive a freshly evolved
solution (set of manoeuvres for all the group of aerial vehicles). Notice that in
case the EA has not been successful in evolving a good solution, the master
aerial vehicle communicates turn circle manoeuvres to the rest group. This al-
lows synchronisation between the aerial vehicles as they are bound to make a
revolution, whilst giving more time to the EA algorithm to produce a result.

Since a non-master aerial vehicle (shown in figure 6) does not interact with
an EA decision unit at the current stage of the system, it does construct and
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Fig. 6. Process flow for a non-master aerial vehicle.

perform turn circle manoeuvres only when no Dubins (or turn circle manoeuvre)
is received by the master aerial vehicle. This feature is rather unusable as the
aerial vehicles will always find a received manoeuvre due to the perfect network
conditions discussed before. Nevertheless, in reality this will allow a non-master
aerial vehicle to continue flying in a controlled attitude and give it time to
synchronize with the rest of the group. It is empirically found that a double turn
circle manoeuvre of 6 seconds (75 degrees bank angle) gives enough time to the
EA decision unit to produce reasonable results for a group of 6 aerial vehicles.
Ultimately, the group’s flying pattern is as follows: turn circle → turn circle →
Dubins → turn circle → turn circle → Dubins → ... etc.
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