Module Information

Module Identifier
Module Title
Academic Year
Intended for use in future years
Other Staff
Further Details:

Course Delivery

Delivery Type Delivery length / details
Lecture 33 hours of lectures
Practical 2 hours
Workload Breakdown 35 hours contact time; 20 hours example sheet work, 20 hours data analysis and report writing for practical; 20 hours literature research and essay preparation; 66 hours weekly revision and background reading; 36 hours exam preparation; 3 hours exam ; (total 200 hours).


Assessment Type Assessment length / details Proportion
Semester Exam 2 Hours   Final exam  50%
Semester Assessment Diffraction practical  15%
Semester Assessment Example sheet  20%
Semester Assessment Literature research essay  15%
Supplementary Exam 2 Hours   100%

Learning Outcomes

On successful completion of this module students should be able to:

1. Explain and apply the concept of reciprocal space.

2. Describe experimental techniques such as phonon spectroscopy, and diffraction.

3. Distinguish material classes such as crystals, polymers, liquids, and glasses according to their structure

4. Analyse crystallographic data and interpret them in terms of structural symmetry.

5. Discuss the relationship between experiment and modelling in science in general and condensed matter physics in particular

6. Explain the origin of band structure and relate it to the electric properties of materials

7. Explain magnetic phenomena in materials

8. Discuss collective magnetic and electrostatic effects and explain related phase transitions

9. Locate and summarise peer-reviewed research literature on subjects within the module's topical range


This module incorporates the research areas pursued in the department into our teaching of condensed matter and materials physics. In addition to exposure of the students to current research, the new module will strengthen group work and information gathering skills compared to its predecessor modules. This is achieved by including a short, assessed practical and an assessed literature research component, respectively.

Brief description

Condensed matter physics covers the structure and dynamics of solid and liquid materials, whose properties are governed by the strong interactions between adjacent atoms or ions. The module covers material classes such as crystals, soft matter, liquids and glasses, properties such as heat capacity, phase transitions, electrical conductivity and magnetism, and experimental techniques such as spectroscopy, diffraction and modelling techniques.


Foundations: scattering, reciprocal lattice, Brillouin zones
Lattice dynamics: phonon spectroscopy, heat capacity, dispersion relations
Synchrotron and neutron sources
Soft matter: physics of polymers and biological matter
Diffraction: space groups, symmetry, phase transitions, order parameter, lattice defects
Modelling: molecular dynamics, Monte Carlo simulation
Liquids, glasses, and the geophysics of extreme conditions
Electronic structure: energy bands, density of states, Fermi surface, quantum statistics
Magnetism: dia-, para-, collective magnetism, domains, Ising & Heisenberg models, NMR
Collective electrostatics: ferro- and piezoelectrics

Module Skills

Skills Type Skills details
Application of Number Example sheets and exam have a strong algebraic and numerical contribution. Analysis of crystallographic data requires mathematical treatment. This is assessed in the practical.
Communication The main purpose of the literature essay is learning to distinguish different types of source including peer-reviewed literature and to establish confidence levels for works of literature found. Academic and technical writing skills trained in literature essay and practical report.
Information Technology Use of standard data analysis and text processing programs.
Problem solving Solving a simple crystallographic problem by analysing diffractograms obtained in the practical.
Research skills A range of experimental techniques available to the materials scientist is covered theoretically in the module. Literature research and report writing is taught and assessed in the literature essay and practical units.
Subject Specific Skills The mathematical concepts go somewhat beyond "application of number", and corresponding training and formative assessment (example sheets) will be provided. Use of modern, research grade scientific equipment and awareness of health and safety issues is covered in the practical.
Team work The practical will be carried out in groups of 2 or 3 students. Group members can organise work within the group according to their own preferences.

Reading List

Recommended Text
Anderseon, JC, Leaver, KD, Rawlings, RD, Alexander, JM (1990) Materials Sciences Chapman & Hall Primo search Ashcroft, Neil W. ([1977]) Solid state physics /Neil W. Ashcroft, N. David Mermin. Holt, Rinehart and Winston Primo search Blundell, Stephen. (2001.) Magnetism in condensed matter /Stephen Blundell. Oxford University Press Primo search Dove, Martin T. (c2003.) Structure and dynamics :an atomic view of materials /Martin T. Dove. Primo search Kittel, Charles. (c2005.) Introduction to solid state physics /Charles Kittel. Primo search Singleton, John (2001 (2004 prin) Band theory and electronic properties of solids /John Singleton. Oxford University Press Primo search


This module is at CQFW Level 6