Module Information

Module Identifier
Module Title
Quantum Information Theory 1
Academic Year
Semester 1
MA10020 or MT10020 or CS20410
Other Staff

Course Delivery

Delivery Type Delivery length / details
Lecture 16 one-hour lectures
Seminars / Tutorials 6 one-hour exercise classes
Workload Breakdown Lectures: 16 hours Exercise classes: 6 hours Private Study: 54 hours Assignment preparation: 12 hours Examination preparation: 10 hours Examination: 2 hours


Assessment Type Assessment length / details Proportion
Semester Assessment 2 Hours   Written Examination (LO 1,2,3,4,5)  80%
Semester Assessment Two marked assignments (LO 1,2,3,4)  20%
Supplementary Exam 2 Hours   Written examination (LO 1,2,4,5)  100%

Learning Outcomes

On successful completion of this module students should be able to:

Perform basic algebraic manipulations of entropic inequalities.

Calculate the capacity of simple classical communication channels.

Calculate measurement outcomes and probabilities of Stern-Gerlach setup.

Apply logical gates on qubits and show their result on the Bloch sphere.

Compare classical and quantum information.


The aim of this module is to introduce basic elements of classical and quantum information theory. This interdisciplinary subject will broaden the students perspective of the interplay between applied mathematics, computer science and physics.

Brief description

The course will be guided by the question "What is information"? Starting by the classical answer given by Shannon, we will introduce basic quantum theory and generalize the notion of information.


Content: Law of large numbers, entropy, relative entropy

Entropic equalities

Classical information, Shannon's noiseless coding theorem, Shannon's noisy coding theorem

Quantum mechanics in a nutshell: States, Superpositions, Measurements

From Bit to Qubit, Bloch sphere

No-cloning theorem

Single qubit gates

Introduction to Quantum Information Theory

Module Skills

Skills Type Skills details
Application of Number Necessary throughout
Communication Written answers to exercises must be clear and well-structured. Good listening skills are essential to progress in this course.
Improving own Learning and Performance Students will be expected to develop their own approach to time-management in their attitude to the completion of work on time, and in doing the necessary preparation between lectures.
Information Technology Work will be set which requires the use of library facilities
Personal Development and Career planning Completion of tasks (exercise sheets) to set deadlines will aid personal development.
Problem solving An exercise sheet will be set for each of the exercise classes and selected exercises marked.
Research skills Students will be expected to use the written resources to find supplementary material.
Subject Specific Skills Broadens student knowledge of topics in applied mathematics, computer science and theoretical physics.
Team work Students will be encouraged to work together on questions during the exercise classes.


This module is at CQFW Level 6