Module Information

Module Identifier
Module Title
Thermal Physics 2
Academic Year
Intended for use in future years
Core Physics Modules at Levels 1 & 2
Other Staff

Course Delivery

Delivery Type Delivery length / details
Lecture 20 x 1-hour lectures and examples classes
Seminars / Tutorials


Assessment Type Assessment length / details Proportion
Semester Exam 2 Hours   : Written examination  80%
Semester Assessment 2 Examples sheets  20%
Supplementary Exam 2 Hours   : Written examination  100%

Learning Outcomes

After taking this module students should be able to:

  • describe such ideas as phase changes.
  • describe low temperature phenomena from a macroscopic and microscopic point of view.
  • explain the basic concepts of statistical mechanics and their application to investigate the properties of matter.

Brief description

This module aims to:
a) build on the introductory thermodynamics course, introducing such ideas as phase changes.
b) introduce phenomena that occur at low temperatures, and explain these from both a macroscopic and a microscopic point of view.
c) introduce the concepts of statistical mechanics, and use these to investigate the properties of matter.


Thermodynamic potential - internal energy U, enthalpy H, Helmholtz function F and Gibbs function G and their physical significance.
The Maxwell relations.
Derivation of general thermodynamic relations for pure substances.
Phase transitions - first order and higher order transitions.
The attainment of absolute zero temperature.
  • Liquefaction of gases (Joule-Kelvin effect)
  • Adiabatic paramagnetic and nuclear demagnetisation
  • the Third Law of Thermodynamics - the unattainability of absolute zero
  • Liquid helium and superfluidity Superconductivity. Conventional superconductors and the BCS theory. Survey high Tc superconductors.
  • Assembly of distinguishable particles: Boltzmann distribution, Partition function, link to thermodynamic quantities, examples
  • Assembly of indistinguishable particles (gases): Fermi-Dirac and Bose-Einstein distributions, Maxwell-Boltzmann distribution, examples

Reading List

General Text
Blundell, Stephen (2006.) Concepts in thermal physics /Stephen J. Blundell and Katherine M. Blundell. Oxford University Press Primo search
Recommended Text
C. Finn Thermal Physics Chapman Hall Primo search D.H. Trevana Statistical Mechanics Ellis Horwood Primo search
Supplementary Text
A. Kent Experimental Low-Temperature Physics MacMillan Primo search P. Reidi Thermal Physics Oxford Scientific Primo search T Guenault Statistical Physics Primo search


This module is at CQFW Level 6