Module Information

Module Identifier
PH38410
Module Title
The Solar Atmosphere & Heliosphere
Academic Year
2013/2014
Co-ordinator
Semester
Semester 1
Pre-Requisite
PH11120 or FG11120, and successful completion of Year 2.
Other Staff

Course Delivery

Delivery Type Delivery length / details
Lecture 20 hours
Seminars / Tutorials 2 x 1-hour seminars
Workload Breakdown Every 10 credits carries a nominal student workload of 100 hours: 20 hours Lectures, 2 hours Seminars, 78 hours independent study
 

Assessment

Assessment Type Assessment length / details Proportion
Semester Exam 2 Hours   60%
Semester Assessment 2 assignment sheets (2 x 20%)  40%
Supplementary Exam 2 Hours   100%

Learning Outcomes

On successful completion of this module students should be able to:

1. Recognise the problem posed by coronal heating and critically discuss heating models;
2. Explain the variation in coronal and solar wind structure in terms of changes in the solar magnetic field;
3. List models that can accelerate relativistic charged particles;
4. Discuss how coronal parameters can be measured;
5. Derive Parker's simple theory of the solar wind and critically discuss its limitations in the light of solar wind measurements;
6. Explain the origin of co-rotating structure in the solar wind;
7. Estimate the location of the solar wind termination shock and critically discuss limitations of the simple model used to calculate this position;
8. Recognise the important factors in Sun-planetary coupling over short and long time-scales;
9. Discuss the main features of Sun-comet coupling, discuss the strengths and weaknesses of the methods available to measure solar wind parameters and show how different methods can be combined to answer specific scientific questions.

Brief description

The course provides an in-depth treatment of the Physics of the solar atmosphere and heliosphere, including coupling between the solar wind and non-magnetised objects.

Content

Corona: Coronal Heating, Plasma density in corona and interplanetary space. Scattering of light in the solar corona. Space-craft measurements. Irregularities in corona and interplanetary space : Coronal features. Coronal dynamics. Movement of visible features in the corona Doppler shift of spectral lines. Coronal Activity: Flares. Solar radio emission. Bursts. X-Rays. Particle emission. Measurement techniques and plasma diagnostics.

Solar wind and heliosphere: Parker's theory. Solar breeze and solar wind. Effect of conductivity and viscosity. Spiral structure of Interplanetary magnetic field. Acceleration of solar wind near sun. Non-uniform flow and shock fronts. Terminator Shock. Measurements of the solar wind: White-light drift measurements, interplanetary scintillation and in-situ measurements. Resolving the 3D structure of the solar wind.

Sun-Earth connections: Interaction with planetary magnetic fields. Terrestrial effects of solar variability. Long period variations in activity. Solar wind and cosmic ray shielding. 'Space climate'.

Module Skills

Skills Type Skills details
Application of Number Questions set in example sheets and formal examinations will include numerical problems
Communication Written communication is developed via lecture assignments.
Improving own Learning and Performance Assignments with feedback are used in order that students might reflect on their progress during the module.
Information Technology Students will be required to research topics within the module via the internet.
Personal Development and Career planning The module will highlight the latest developments in this field and hence will assist with career development.
Problem solving Problem solving is a key skill in physics and will be tested via problems in the assignment sheets, and in formal examination at the end of the module
Research skills Students are required to independently research topics covered by the course in the library and using the internet.

Notes

This module is at CQFW Level 6