# Module Information

Module Identifier
PH22510
Module Title
Electricity and Magnetism
2014/2015
Co-ordinator
Semester
Semester 2
Pre-Requisite
MP26020 or FG26020, and successful completion of Part 1.
Other Staff

#### Course Delivery

Delivery Type Delivery length / details
Lecture 20 x 1 hour lectures
Seminars / Tutorials 2 x 1 hour seminars

#### Assessment

Assessment Type Assessment length / details Proportion
Semester Assessment Assignment example sheets  30%
Semester Exam 2 Hours   Written examination  70%
Supplementary Exam 2 Hours   Written Examination  100%

### Learning Outcomes

On successful completion of this module students should be able to:

Show an understanding of concepts and physical laws in electricity and magnetism.

Explain the effects of matter on electric and magnetic fields and the boundary conditions for such fields.

Demonstrate an understading of Maxwells's equations from the empirical laws of electromagnetism.

Identify and use relevant vector calculus notation in solving broadly-defined examples in electricity and magnetism.

### Aims

This module deepens the student's understanding of the empirical laws of electromagnetism. These are expressed in terms of the vector calculus notation introduced earlier in MP26020(FG26020). Problem solving skills are developed where the student is expected to identify and use relevant methods to solve broadly-defined examples in electricity and magnetism. It is a core module for physics degree schemes and provides a background in electricity and magnetism required for modules at higher level.

### Brief description

The module considers the physical laws in electricity and magnetism. The first part focuses on electricity and includes electrostatics and dielectrics with the second part covering magnetic fields, magnetic material and electromagnetic induction. Electromagnetic boundary conditions which apply at the interface between two simple media are discussed. The physical laws are expressed in terms of the differential operators of vector calculus and collectively presented as Maxwell's equations.

### Content

RECAP VECTOR CALCULUS
- divergence theorem, Stokes' theorem.
- vector identities.

ELECTROSTATICS
- electric charge and field.
- Gauss' law.
- electrostatic energy, potential.
- capacitors, dielectrics, polarisation, electric displacement, Gauss? law for electric displacement.
- boundary conditions for D and E.
- Poisson's equation.
- electrostatic calculations.

MAGNETIC FIELDS
- Lorentz force.
- magnetic dipole.
- Ampere's law, Biot-Savart law, magnetic vector potential.
- magnetisation, magnetic intensity.
- boundary conditions for B and H.
- magnetic hysteresis.

ELECTROMAGNTIC INDUCTION
- inductance.
- magnetic energy.

MAXWELL EQUATIONS
- equation of continuity.
- displacement current.
- Maxwell's equations and plane electromagnetic wave solution.
- Poynting vector.
- polarisation of waves, behaviour at plane interfaces.

### Module Skills

Skills Type Skills details
Application of Number All questions set in example sheets and formal exams have numerical problems.
Communication Students are expected to submit written solutions to examples sheets.
Improving own Learning and Performance Examples sheets and feedback are designed to encourage self-directed learning and improve performance.
Information Technology Students are expected to research topics within the module via the internet.
Personal Development and Career planning The module covers core physics topics, essential for the academic portfolio of a student planning to work in the field.
Problem solving Problem solving skills are developed throughout this module and tested in example sheets and in the written examination.
Research skills Directed reading will allow students to explore the background to the lecture module. Students will also be set problems which will entail research in library and over the internet.
Subject Specific Skills Electricity and Magnetism are core copics in Physics.