Module Information

Module Identifier
MP35610
Module Title
Quantum Information Theory 1
Academic Year
2016/2017
Co-ordinator
Semester
Semester 1
Pre-Requisite
MA10510/MT10510 or PH16210/FG16210 or CS10410
External Examiners
  • Dr Andrew Hazel (Reader - University of Manchester)
 
Other Staff

Course Delivery

Delivery Type Delivery length / details
Lecture 16 x 1 Hour Lectures
 

Assessment

Assessment Type Assessment length / details Proportion
Semester Assessment Two marked assignments (LO 1,2,3,4)  20%
Semester Exam 2 Hours   Written Examination (LO 1,2,3,4,5)  80%
Supplementary Exam 2 Hours   Written examination (LO 1,2,4,5)  100%

Learning Outcomes

On successful completion of this module students should be able to:

Perform basic algebraic manipulations of entropic inequalities.

Calculate the capacity of simple classical communication channels.

Calculate measurement outcomes and probabilities of Stern-Gerlach setup.

Apply logical gates on qubits and show their result on the Bloch sphere.

Compare classical and quantum information.

Aims

The aim of this module is to introduce basic elements of classical and quantum information theory. This interdisciplinary subject will broaden the students perspective of the interplay between applied mathematics, computer science and physics.

Brief description

The course will be guided by the question "What is information"? Starting by the classical answer given by Shannon, we will introduce basic quantum theory and generalize the notion of information.

Content

Law of large numbers, entropy, relative entropy.

Entropic equalities.

Classical information, Shannon's noiseless coding theorem, Shannon's noisy coding theorem.

Quantum mechanics in a nutshell: States, Superpositions, Measurements.

From Bit to Qubit, Bloch sphere.

No-cloning theorem.

Single qubit gates.

Introduction to Quantum Information Theory.

Module Skills

Skills Type Skills details
Application of Number Necessary throughout.
Communication Written answers to exercises must be clear and well-structured. Good listening skills are essential to progress in this course.
Improving own Learning and Performance Students will be expected to develop their own approach to time-management in their attitude to the completion of work on time, and in doing the necessary preparation between lectures.
Information Technology Work will be set which requires the use of library facilities.
Personal Development and Career planning Completion of tasks (exercise sheets) to set deadlines will aid personal development.
Problem solving An exercise sheet will be set for each of the exercise classes and selected exercises marked.
Research skills Students will be expected to use the written resources to find supplementary material.
Subject Specific Skills Broadens student knowledge of topics in applied mathematics, computer science and theoretical physics.
Team work Students will be encouraged to work together on questions during the exercise classes.

Notes

This module is at CQFW Level 6