Module Information

Module Identifier
PH22010
Module Title
Optics
Academic Year
2018/2019
Co-ordinator
Semester
Semester 2
Pre-Requisite
A level Mathematics (or equivalent)
Reading List
External Examiners
• Professor Pete Vukusic (Professor - Exeter University)

Assessment

Assessment Type Assessment length / details Proportion
Semester Assessment 2 Example Sheets  30%
Semester Exam 2 Hours   Written Examination  70%
Supplementary Exam 2 Hours   Written Examination  100%

Learning Outcomes

On successful completion of this module students should be able to:

1. Describe and analyse the wave properties of light including interference, diffraction, coherence, scattering, polarization.
2. Examine the relevance of the wave-like behaviour of light to the operation of optical instruments and interferometers.
3. Analyse and solve problems in wave optics, applying appropriate mathematical methods, such as phasors and Fourier analysis.
4. Examine the complex interactions of light with matter; e.g. birefringence, dispersion.
5. Describe and explain the operation of optical instruments and detectors, such as the human eye, CCDs, microscopes and telescopes.

Aims

The module considers the wave behaviour of light to investigate optical properties of materials. Interference, diffraction, coherence, scattering and polarization are discussed together with their applications to modern instruments and detectors. Problem solving skills are developed where the student is expected to identify the underlying processes to address and solve examples in the field. It is a core module for physics degree schemes and provides a basis for more advanced optics modules at higher level. The module is also suitable for other degree schemes where a background in optics is required to understand optical instrumentations.

Brief description

The module considers the wave properties of light, including interference, diffraction, scattering and polarization. Their significance in the operation of optical instruments is discussed, for example to the resolution limit of an optical system. An introduction is given to their applications in optical instruments and detectors including lasers, CCDs, microscopes and telescopes. Optical properties of materials are considered and the ellipsometry method for their investigation.

Content

1. Wave properties of light; more on interference, diffraction, scattering, coherence

• Thin-film interference and applications, multiple-beam interference, Fabry-Perot etalon.
• Michelson interferometer and Michelson-Morley experiment.
• Fraunhofer and Fresnel diffraction, use of phasors in optics.
• Resolution limits of diffraction on optical instruments, Airy disk / Rayleigh criterion.
• Scattering of light, Mie theory, Rayleigh scattering.
• Spatial/temporal coherence of light, laser speckle patterns etc.
2. Introduction to use of Fourier transforms in optics

3. Optical resonators and cavities
• Phase change on reflection, normal modes of a cavity.
• Q-factor, optical stability.
4. Polarization of Light
• Plane, circular and elliptical polarization.
• Fresnel equations, Brewster'r angle, polarization by reflection.
• Birefringence.
5. Optical Instruments and detectors
• Microscopes; bright/dark field, phase contrast, Abbe theory.
• Telescopes.
• CCDs and photodiodes.
• Aberrations and noise, introduction to 'image processing'
6. Optics of Materials
• More on dispersion.
• Complex refractive index, outline of Kramer-Kronig relations.
• Ellipsometry and applications.

Module Skills

Skills Type Skills details
Application of Number Questions set in example sheets and formal exams have numerical problems.
Communication Students are expected to submit written solutions to examples sheets.
Improving own Learning and Performance Examples sheets are designed to encourage self-directed learing and improve performance.
Information Technology Students expected to research topics within the module via the internet.
Personal Development and Career planning The module covers core physics topics, essential for the academic portfolio of a student planning a career in the field.
Problem solving Problem solving skills are developed and tested in assignments and in the written examination.
Research skills Directed reading will allow students to explore the background to the lecture modules.
Subject Specific Skills Optics is a core topic in Physics.

Notes

This module is at CQFW Level 5