

 XML :

A TECHNOLOGY PERSPECTIVE AND

SECURITY IMPLICATIONS

GERARD ANG

UNIVERSITY OF WALES, ABERYSTWYTH

2003

 XML :

A Technology Perspective and Security Implications

GERARD ANG

A dissertation submitted in partial fulfillment of the requirements for the

degree of Master of Science in Computer Science in the University of Wales

Supervisor: Dr Fredrick W. LONG

University of Wales, Aberystwyth

15 September 2003

DECLARATIONS

This work has not been previously accepted in substance for any degree and is not being
concurrently submitted in candidature for any degree.

Signed: _________________________ (Gerard ANG)

Date: 15 September 2003

STATEMENT 1

This dissertation is being submitted in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science.

Signed: _________________________ (Gerard ANG)

Date: 15 September 2003

STATEMENT 2

I hereby give consent for my dissertation, if accepted, to be available for photocopying and for
inter-library loan, and for the title and summary to be made available to outside organizations.

Signed: _________________________ (Gerard ANG)

Date: 15 September 2003

T a b l e o f C o n t e n t s

TITLE

DECLARATION

ACKNOWLEDGEMENT

TABLE OF CONTENTS

ABSTRACT

CHAPTER 1 XML History: The Internet and Markup Languages

1.0 The Internet 1
2.0 The Web Architecture 1
3.0 Interpreting Documents on the Web 2
4.0 The Concept of Markup Languages 2
5.0 Standard Generalized Markup Language (SGML) 2
6.0 Hypertext Markup Language (HTML) 3
7.0 After SGML and HTML, Comes XML 4

CHAPTER 2 Structured Information

1.0 Introduction 5
2.0 The Need for Information Exchange 5
3.0 Data and Information 5
4.0 Structured Data and Information 6
5.0 Providing Context and Vocabularies 7
6.0 Data Portability 7
7.0 Benefits of Structured Data 8
8.0 Processing Implications of Structured Data 9
9.0 Conclusion 9

CHAPTER 3 Extensible Markup Language (XML) Overview

1.0 Introduction 10
2.0 XML History 11
3.0 XML’s Goals 11
4.0 XML Document Structure 12
5.0 Schemas 13
6.0 Document Validity and Well-Formness 13
7.0 XML’s Core Elements and Functionality 14
8.0 Extensibility 14
9.0 Metalanguage and Metadata 14
10.0 The Importance of Metadata 15
11.0 Outputting XML Documents 15
12.0 Transforming and Re-Formatting Documents 15
13.0 Contrast between XML and HTML 16
14.0 XML History 17
15.0 XML Standards 17
18.0 XML Landscape 17

CHAPTER 4 XML Features, Benefits and Capabilities

1.0 Introduction 18
2.0 Features, Benefits and Advantages of using XML 18
3.0 Capabilities 21
4.0 Conclusion 23

CHAPTER 5 XML Security

1.0 Introduction 24
2.0 The need for security for XML Documents 24
3.0 XML and Security 25
4.0 Uses of XML Digital Signature 26
5.0 Conclusion 27

CHAPTER 6 XML Digital Signatures

1.0 Introduction 28
2.0 XML Digital Signature Semantics 29
3.0 XML Digital Signature Standard 30
4.0 The Components of XML Signature Elements 30
5.0 The Signature Generation Procedure 31
6.0 Hash Functions 32
7.0 Canonical XML Specifications 32
8.0 The Information in XML Digital Signatures 33
9.0 XML Signature Examples 33
10.0 Transforms 35
11.0 The Validation Process 37

12.0 XML Signature Recommendation 37
13.0 Conclusion 38

CHAPTER 7 XML Digital Signature Considerations

1.0 Introduction 39
2.0 Implications of Security in XML-enabled Documents 39
3.0 Impact on the architecture of the Internet 40
4.0 Implications on Transforms 40
5.0 Implications on Security Assertion 41
6.0 Implications on Multi Layer Security 41
7.0 Implications of Digital Signature Strength 42
8.0 Implications on Legislation 42
9.0 Conclusion 42

CHAPTER 8 The Future of XML

1.0 Introduction 44
2.0 Implications of being Application Independent 45
3.0 Implications on enabling Systems Integration 45
4.0 Implications for HTML 45
5.0 Implications of Metadata 46
6.0 Implications of an Open Structure 46
7.0 Impact on Databases 47
8.0 Impact on Skill Base 47
9.0 Impact on Infrastructure 47
10.0 Challenges of XML Adoption 48
11.0 Critical Analysis 49

LIST OF APPENDICES

APPENDIX A XML HISTORY 50
APPENDIX B XML STANDARDS 51
APPENDIX C XML LANDSCAPE 52

BIBLIOGRAGHY 53

Chapter 1

XML History: The Internet and Markup Languages

The development of the Extensible Markup Language (XML) is closely linked to the evolution of the
Internet and the World Wide Web. This chapter describes:

 The brief history of the Internet and the Web Architecture
 Interpreting documents on the Web
 The concept of markup languages
 SGML and HTML : Structure, advantages and limitations

1.0 The Internet

The Internet started as a project by the US Department of Defense in the 1960s. The aim was
to develop a network of linked computers that could continue to communicate even if a part
of the network were destroyed. Today, the Internet provides the infrastructure and associated
protocols to support many different computer applications. It offers a platform for many
services to be delivered electronically throughout the world.

Conceptually, the Internet is the infrastructure, while the World Wide Web is the application
suite that uses this infrastructure. The Web enables information transfer and sharing. At the
heart of the Internet is a suite of networking protocols known as the Transmission Control
Protocol / Internet Protocol (TCP/IP).

While being developed, the challenge was to create a system that would be accessible to all
the diverse computer systems in use. A number of potential solutions existed then, such as
Postscript. However, these languages were found to be too complex and eventually, the
Standard Generalized Markup (SGML) was selected as the basis for Web content. Later,
SGML was used to define the Hypertext Markup Language (HTML) as a language for
producing Web pages. These pages are designed to be for human consumption. That is,
human-centric, as opposed to being machine-centric [31].

2.0 The Web Architecture

The Web architecture is based on a client-server model. The client application is the browser,
and other software applications function as servers (e.g. Netscape Application Server,
Apache).

The browser allows users to locate Web pages by using specific page addresses known as a
Uniform Resource Locator (URL). The Hypertext Transfer Protocol (HTTP) is used to enable
the client browser to communicate with the Web server (e.g. to locate, download, interpret,
and display ‘pages’).

The browser sends a HTTP request to the server (the request is encapsulated by TCP/IP and
carried across the network). The server then locates the requested page, and sends it to the
browser. The browser sees the body, interprets and presents it [16].

Chapter 1: XML History – The Internet and Markup Languages 1

3.0 Interpreting Documents on the Web

Although most browsers support basic HTML definitions, different vendors (e.g. Microsoft,
Netscape) have added their own proprietary features and extensions (e.g. non-standard tags)
to expand basic HTML and increase browser functionality. These have resulted in
interoperability problems. Because the browser interprets the contents of a HTTP response
according to its internal rules, the same web page might not look or behave in the same way
when different browsers are used [13].

Furthermore, vendors may have added proprietary extensions that can only be accessed
through proprietary scripting languages. A vendor might add platform-specific scripting
capabilities to their own browser, allowing access to specific browser functionality not
directly supported by HTML [6]. Ironically, by taking advantage of such scripting
capabilities, a web developer might inevitably restrict the range of browsers that can correctly
handle the document he is developing.

4.0 The Concept of Markup Languages

A markup language is a mechanism for identifying the structure in a document. It describes
how the text within a document is structured according to tags. These tags are used to
‘markup’ words or sections, so as to indicate actions or identifications. Hence, a document
can be ‘marked up’ to facilitate information search, or to relate information with other markup
documents [3], [16].

Among other things, a markup language allows users to:

 add meaning to the underlying text
 provide structure to the document; and
 provide basic layout instructions.

For example, to bold a text, add two "BOLD" tags enclosed between two angle brackets ‘<’
and ‘>’, as in ‘<BOLD> urgent</BOLD>’. Thus, a markup language defines a fixed set of
tags that describe a fixed number of elements.

The browser interprets the markup information and acts on it. In some cases, if a browser
encounters a tag that the browser cannot understand, it will treat it as a default text and
displays its contents.

5.0 Standard Generalized Markup Language (SGML)

SGML is a markup language that describes the structure of a document. It is a complex and
powerful language, designed to deal with large sets of data. Being a meta-language, SGML
can be used to define other languages, such as HTML. Hence, HTML is one of SGML’s
Document Type Declaration (DTD) [31].

5.1 The Advantages of SGML

Some advantages of SGML are [19]:

1. It is intelligent and adaptable, and best used in managing large sets of data, such as
dictionaries and encyclopedias.

Chapter 1: XML History – The Internet and Markup Languages 2

2. It is a universal standard and is supported by many software vendors. Because of this
universality, a document developed on the SGML standard is much more likely to
survive the test of time, than one built around more ephemeral, vendor-specific
standards.

3. It describes the data, and not just the way in which it is presented.

5.2 The Limitations of SGML

The weaknesses and limitations of SGML are [3]:

1. It is extremely general-purpose
2. It is complex. Its specifications comprise of around 500 pages
3. The tools are very expensive to acquire (e.g. Framemaker)
4. It lacks power in linking and portability. Hence, interoperability is very limited.

6.0 Hypertext Markup Language (HTML)

HTML is a language defined by the SGML. HTML was created to counter the complexity of
SGML, while retaining some of SGML’s power [8].

6.1 The Structure of HTML

A HTML document is structured as it follows the rules associated with the underlying
standard. However, a HTML document need not have to strictly adhere to the standard [13].

HTML takes the form of a series of tags enclosed by angle brackets < >. HTML documents
should begin with a <!doctype> statement. This statement identifies the version of HTML to
which the document conforms. The statement references the external DTD that contains the
SGML definitions. A user can use a validator program to check if the document conforms to
the standards of the stated DTD. However, due to relaxed requirements of HTML, relatively
few documents on the Web would pass extremely strict validation [29], [31].

6.2 HTML Document Presentation

A series of tags are used to define how a document should look like on the browser. For
example, tags such as <h1> or <p> are used to specify the structure of a document and its
logical hierarchies [13]. Or, tags can be used to specify how a page should look when
displayed, which fonts should be used, and so on.

HTML is weak in final formatting. Workarounds typically have to be used to achieve the
desired effects [3]. Furthermore, as mentioned earlier, because of browser differences, the
effectiveness of using HTML to gain strong presentation control over web pages is hindered.

6.3 The Advantages of HTML

One of the main reasons the Web caught on quickly was because users need not be
experienced programmers to develop web pages. HTML is “forgiving” of sloppy
programming, or unplanned development.

The advantages of HTML include [8]:

Chapter 1: XML History – The Internet and Markup Languages 3

Chapter 1: XML History – The Internet and Markup Languages 4

1. It is easy to learn, as it is a simple page description language.
2. It is simple to use. The user employs a series of tags to define how a document should

look like
3. It is forgiving in that strict adherence of syntax rules is not mandatory
4. HTML pages can be generated easily using a graphics editor. The obligatory chore of

manually entering tags is not required. HTML authoring tools such as FrontPage
generates the HTML tags for the user

5. It is a cross-platform solution
6. It is widely supported (that is until browsers decided to have their own

functionalities)
7. It is a mature language. Users have worked around many of the earlier limitations
8. It is pervasive

6.4 The Limitations of HTML

Some limitations of HTML include [3], [13]:

1. It is not suitable for explicit queries about the page content. Although a HTML page
contains a mix of content and presentation, HTML only describes the appearance of
the page, that is, how a page should appear

2. It is version dependent. Certain browsers may not support a particular HTML version
3. It does not enforce best practices in programming techniques. For example, the

“begin” and “end” tags are not mandatory
4. When implemented by a vendor, it is dependent on both client and server
5. It is not extensible
6. It does not allow individual elements to be marked up semantically

Although there are many limitations of HTML, its simplicity and straightforwardness ensures
its widespread use.

However, it was only recently that users understood the importance of content classification.
This is something that HTML does not provide.

7.0 After SGML and HTML, Comes XML

As explained earlier, while SGML is too complicated, HTML is not complicated enough to
handle Web page requirements. Hence, HTML’s inherent restrictions have led to the
development of proprietary extensions by various vendors. This in turn has put a negative
effect on the universality of HTML-formatted documents [18], [31].

To overcome HTML’s limitations, since SGML is HTML’s “mother tongue”, an obvious
approach would be to see if SGML can be improved. Developers concluded that a
simplification of SGML is the answer, not a broader-based HTML [3]. Therefore, a new
language allowing users to implement their own applications on the basis of a simple standard
is required. Enter XML.

Chapter 2

Structured Information

One of the reasons for the paradigm shift towards business disintermediation and disintegration of
operations is the availability of easily accessible information. Enabling technologies to process data
and information has made this possible. This chapter describes:

 The need for information exchange
 The concepts of data and information
 The concept of structured data and information
 The concept of information context and vocabulary
 The concept of data portability
 The benefits of Structured Data
 Processing Implications of Structured Data

1.0 Introduction

The use of Information Technology in business operations has resulted in the
disintermediation of operations that rely on easily accessible information flows. For example,
in the insurance business, the services of a “middle-man” or intermediary to broker a deal is
less needed now, as information flow between the customer and insurance company, and
vice-versa, can be done electronically [31]. This ability to easily share and exchange
information has been cited as a major competitive advantage for many companies.

2.0 The Need for Information Exchange

The amount of data and information made available has never been larger. With the trend
towards globalization, the need for companies to exchange data and information in an
effective and efficient way has never been greater. Some of the business drivers for effective
information exchange are:

 Controlling and reducing operational costs
 Increasing sales and revenues
 Increasing competitive edge

In an operationally demanding setup, it is quite easy to appreciate that a smooth, efficient and
effective operation of a company can only be effected if information exchanges are done
effectively, efficiently and seamlessly.

Furthermore, the growth of the Internet has changed businesses’ perception of how
information should be accessed or exchanged [5]. In both internal and external transactions,
information exchanges can be for person-to-person (humans centric), and application-to-
application (machine centric).

3.0 Data and Information

 1.52 360 12:45

Chapter 2: Structured Information 5

Although we can infer some meaning for each data shown above, in its own right, each data
does not make much sense. For example, the data “1.52” could mean $1.52, or 1.52 metres.
Without additional context, the information is incomplete. Hence, to be able to exchange data,
one must provide additional context that enables the meaning to be obtained.

In the case of information, two possible definitions for “information” could be [1]:

 Data that has been organized and presented in a systematic way, to clarify the
underlying meaning; or

 Data that is arranged and organized, so that it has meaning

These two definitions cover the core aspects of ‘structure’ and ‘organization’.

4.0 Structured Data and Information

Data and information can be in the following forms:

 In free-form
 In a semi-structured form (e.g. a newspaper article)
 Structured (e.g. phone directory)

When data is structured, it means that [13]:

 a vocabulary that defines the elements in the document can be specified
 the relations between these elements are specified

For example:

 in a customer contacts list, every contact must list a phone number and email address
 all fields in the database must be entered. E.g. every ‘book’ field must have an author

When data is structured, the data is transformed from a state of an unordered mass of free-
form information, to a structured, searchable, and understandable store of data [31].

Consider a webpage advertisement of a holiday shown below:

Diving Holiday

Go diving in Wales
For $390

5 nights in Aberyswth, including full

dive equipment, based on twin
sharing basis

Departing Heathrow
June 21, 2002

Refer to the advertisement above, one could:

 easily relate this webpage information to a page from a printed advertisement
brochure and treat the information in a single, complete item; or

 equate it in a data-centric way, i.e. putting the information into some form of
structure. E.g. defined as a “Holiday Information”,

Chapter 2: Structured Information 6

An example of relating the information in a data-centric way is shown below:

Holiday Information

Holiday type: Diving
Country: Wales
Location: Aberyswth
Number of nights: 5
Departure date: June 21, 2002
Price: $390
Price basis: Twin sharing
Additional info: Full dive equipment provided

From the above, we can see that a structure provides the context for information content. Such
a structure or vocabulary will facilitate easier exchange of information. If one is to exchange
information on anything other than on a random basis, the definition and agreement of
underlying structural formats and vocabularies are critical [3].

5.0 Providing Context and Vocabularies

Different vocabularies would be needed to support different applications.

For example, from the “Holiday Information” examples shown earlier, the definition used to
exchange “Holiday Information” differs from the definition used for, say, (a) currency
exchange rates, and for (b) recipes, as shown below.

(a) Currency Exchange Rates Vocabulary

Base currency: GBP
Target Currency: USD
Date: 21/06/2002
Time: 12:34
Rate: 1.56

(b) Recipe Vocabulary

Name: Shepherds Pie
Portions: 12
Ingredients: Flour 2 cups

 Butter 1 cup
 Sugar 5 teaspoons

Method: Preheat oven to 2200 C, etc…

6.0 Data Portability

The concept of using well-defined data structures is not new. For example, conventional
databases provide context through data dictionaries and column definitions.

However, the portability of data has always been an issue. Until recently, data formats are
typically proprietary (closed standard, as opposed to an open standard), even when the access
syntax is portable (e.g. SQL) [31]. As the use of information technology broadens, the
requirement for standardization (open standard) across platforms has become a major issue.

Chapter 2: Structured Information 7

Programming languages like Java has enabled portable code for cross-platform capability.
Therefore, having portable data is the next step for application-independence capability. This
will enable the passing of data between applications without any loss of meaning [1].

The way in which the Web is used has changed greatly. In the past, it is seen more as an
information repository, where data is largely unstructured [13]. Now, with the emergence of
Web-based applications, the Web is used more as a vehicle for machine-to-machine
information exchange (machine-centric), rather than only as a mechanism to deliver
information to humans (human-centric) [1].

Hence, the Web has moved from being an environment of free form, unstructured, document
repository, to a structured environment for application-processing [26]. In this machine-to-
machine environment, having structured data is critical to ensuring data portability.

7.0 Benefits of Structured Data: Application Independence

One benefit of having common structures and open standards is that it enables low degrees of
application coupling. If data from different sources adhere to commonly agreed structures,
applications can be built to consolidate the data and present it in a unified way [31]. For
example, if a food manufacturer requires more sugar, he would typically need to make many
phone calls to attempt to source for sugar supplies.

However, if he had adopted a standard format for structured data that is in common with the
rest of the food and sugar industry, the situation would have been different. For example:

 The manufacturer would have a browser-based application for locating suppliers. He
does not have to refer to his old contact list of sugar suppliers or other directories,
which might not be up-to-date in any case.

 The application automatically makes request for sugar from potential sugar suppliers,
and receive responses in the standard industry format

 The application could then sort and display the information from potential suppliers,
for example, by location, by volume of sugar available, and by price

 The application could then place the order with the supplier

The application could have the additional benefit of being able to work with any new
suppliers that conforms to the common standard. This means that the food manufacturer will
always have an up-to-date list of sugar suppliers.

Computer

Data Data

Data Data

Data Data

Supplier
application

servers

Requests
&

responses

Supplier
Web

servers

Requests
&

responses

Browser-
based

application

Chapter 2: Structured Information 8

Chapter 2: Structured Information 9

Having structured information can be a key enabler to many other types of applications, such
as data aggregation, search and retrieval, and media-independent publishing [3]. These
applications could be document-centric, or data-centric, and some hybrids of both. For
example:

 E-commerce applications
 Concise search and retrieval applications that makes use of known data formats. Able

to tightly target the required information
 Producing documents which are independent of any particular publishing media. The

user can apply the appropriate format processing later and target the document to any
output media, like paper, etc.

8.0 Processing Implications of Structured Data

Web pages are commonly used as mechanisms to provide access to information from other
systems. For data-centric applications, static web pages are populated by server scripts from
data contained in a range of systems, such as databases and Enterprise Resource Planning
applications [13].

At the same time, data can be accessed from a range of proprietary sources and then
converted into standard formats. Thus, the data processing landscape can become quite
complex [31]. As the use of structured data increases, it is expected that the use of static Web
pages will decrease.

9.0 Conclusion

The Internet has evolved and transformed from being a publishing medium to being an
application-processing environment.

Portability of data is now required. As businesses move entire systems to the Intranet, they
will need to rely on structured documents to build complex structures of documents using
custom tags. This cannot be achieved easily with HTML, as HTML was not designed to deal
with structured data nor support the flexible interchange of structured information [3]. Hence,
it cannot meet many of today’s business needs for information exchange.

Alternative technologies are needed to meet the new requirements for information exchange,
and the emerging application-processing environment. As it was no longer practical to stretch
the limits of HTML, XML was developed to meet this new challenge.

Chapter 3

Extensible Markup Language (XML): An Overview

The XML specification evolved from the SGML and HTML. This chapter provides an overview of XML
by describing XML’s:

 History and goals
 Document Structure (DTDs, Schemas, Document Validity and Well-Formness)
 Core Elements and Functionality
 Concepts of Extensibility and Metadata
 Outputting, Transforming and Re-purposing XML
 Key difference with HTML
 Standards, History and Landscape

1.0 Introduction

XML is formal markup language that provides an open-standard format for describing
documents containing structured data and information. It is a system used for defining,
validating, and sharing document formats. ‘Document’ refers to structured text and data
formats such database schemas.

XML enables the creation of customised markup languages for specific documents and
domains. Using a methodology for tag creation, tags are used to distinguish document
structures and attributes, to encode document information. Once defined, tags are mixed with
data to form a XML document [3], [18].

As compared to HTML which addresses the presentation of data, XML separates presentation
from data. Hence, XML specifies structures, not meaning. It is data-centric, not design-centric
as it is concerned only with the document description and structure of data.

XML enables the easy interchange of structured data. It is based on the concept of documents
having a series of entities (object). Each entity contains one or more elements (component
parts). Information about the elements can be passed to other machines, enabling the sharing
of data. Each of these elements can have certain attributes (properties) [13]. These attributes
describes the way in which it is to be processed.

XML allows the user to create their own custom tags to describe their data. The tag would
explicitly identify the kind of information contained in a document [25]. For example, the
<ORDER> tag could identify a business transaction; the <PRICE> tags could contain the
product cost, and so on.

The power of XML is on the backend, where data is passed to one or more systems.
Communications among data sources and recipients is possible because XML acts like a
“dynamic data dictionary,” passing along data that has or can reference elements and
attributes. But in order for this to happen, XML needs to be fed XML-based inputs [3].

To read an XML document, an XML parser/processor is required. This can be implemented
as a browser (for display), or as an application module (for complex processing)

Chapter 3: XML Overview 10

2.0 The XML History

The XML specification evolved from the Standard Generalized Markup Language (SGML).
In 1996, the W3C started work to define an SGML-like standard, eventually named XML.
Thus, XML is a simplified subset of SGML [16].

SGML

XML

XHTML HTML
Parallel vocabularies for
publishing pages on the
Web

Structured information
system scaled back for
Web processing

Original, full-featured system for
structured information;
Too complex for Web

XML’s core syntax, the XML 1.0 specification, became a W3C recommendation in 1998.

3.0 XML’s Goal

The XML specification sets out the following goals [16], [28]:

1. XML shall be straightforwardly useable over the Internet. Users should be able to
view XML documents as easily, and as quickly as they can view HTML documents.

2. XML shall support a wide variety of applications. XML should not be narrowly
defined, such as only limited to a specific application. It should be extensible enough
to create different applications; to extend to many applications, like content analysis,
browsing, and document management

3. XML shall be compatible with SGML. XML should be compatible with existing
technologies while offering new capabilities in delivering structured documents

4. It shall be easy to write programs that process XML documents. An assurance of
XML’s simplicity

5. The number of optional features in XML is to be kept to the minimum. This is to
address incompatibility problems

6. XML documents should be human-legible and reasonably clear. A user should be
able to read the document and figure out what the content means

7. The XML design should be prepared quickly. This is to meet an immediate need.

Chapter 3: XML Overview 11

8. The XML design shall be formal and concise. XML must be amenable to modern

compiler tools and techniques

9. XML documents shall be easy to create. Users need not have to use specific software
to create documents

10. Terseness in XML markup is of minimal importance. XML markup need not be
concise as concise tag names can be difficult to understand by just looking at them

4.0 XML Document Structure

A good document structure enables users to make changes to the data easily. This is
especially useful for automated data processing. To enable this, a XML document structure
follows strict but simple rules.

The following are some requirements for any XML document [16]:

 Tags occur in pairs. The start and closing tags must be balanced.
 Closing tag has a forward slash preceding it. E.g. <student>David</student>
 Tags can be in upper or lowercase, but must have the same matching case for a tag

pair
 Syntax rules must be adhered to. E.g. elements must be nested correctly
 Attribute values must be in open quoted
 XML documents can contain a Document Type Declaration (a !DOCTYPE

statement) or this can be omitted. If included, it points to a file that contains the
definitions of the structures expected in the document

 A document may only have one root element

An example of a document having only one root element, in this case “holiday”, is as follows:

<?xml version=”1.0”?>
<!DOCTYPE holiday SYSTEM “holiday.dtd”>
<holiday>
<country>Wales</country>
<location>Aberyswth</location>
<when>20020621</when>
<length>5 nights</length>
<price>390</price>
<farebase>twin sharing</farebase>
<departs>Heathrow</departs>
<activity>diving</diving>
<equipment>full dive equipment</equipment> H

ol
id

ay

Document Type Declaration

XML Declaration

O
th

er
 e

le
m

en
ts

<holiday>

An XML schema defines the elements that can appear within a document and the attributes
that can be associated within an element. It defines the structure of the document, including
the relationships between the elements, the data type the elements can store, and how many of
that same element can occur [19].

Chapter 3: XML Overview 12

5.0 Schemas

A XML document structure is described in a XML schema. XML documents that adhere to
the vocabulary defined in a schema are considered ‘valid’.

There are two approaches to defining XML schemas. They are:

5.1 Document Type Definition (DTD)

A DTD is a set of rules that defines the structure for an XML document. Using special syntax
to describe the structure of XML vocabularies, DTDs serve as templates to pour data in and
arrange it.

DTDs can be shared across networks. This enables users to read each other’s files, enabling
data exchange. DTDs can reside in the document, or be kept in a separate file referred to by
the file that conforms to the DTD. Linking to a separate DTD is usually used when there is a
large set of XML documents that must conform to the same DTD.

XML does not require the presence of a DTD. If no DTD is available (e.g. because the user
did not create it), the system can assign a default definition for undeclared components of the
markup [16], [19].

5.2 XML Schema

Like DTDs, the XML Schema is used to specify the schema of a particular class of
documents. Using XML syntax, users need not learn a new language to define the grammar of
XML documents [16]. The user just needs to declare attributes and elements using the XML
Schema.

6.0 Document Validity and Well-Formness

XML documents follow two rules of syntax [5], [16]. They are:

1. A document is considered valid if it conforms to the rules in the DTD. That is, if it
follows the DTD rules, it conforms to the XML specification. This also means that it
is well-formed. A well-formed document adheres to the XML syntax rules

2. If the document does not conform to a DTD, but conforms to the XML specification,

then it is said to be well-formed

Document validity is useful because as valid documents, that are much easier to use. Invalid
documents can contain any set of tags, and in any random order. In such cases, document
reusability would be problematic [19].

Another characteristic of valid XML documents is that they are also compatible with SGML.
Hence, cross-platform interoperability is assured.

A well-formed document is easy for computers to read. A document is “well-formed” if [16]:

 Its syntax conforms to the XML specifications
 The start-tags and closing-tags match up
 Elements are properly nested
 Empty tags use the special XML syntax (e.g. <empty/>)

Chapter 3: XML Overview 13

 All the attribute values are nicely quoted
 All the entities are declared
 There are no external entity references

7.0 XML’s Core Elements and Functionality

The XML specification addresses the “core” language itself, which describes [3]:

 the syntax
 the styling requirements
 the linking capabilities (to logically connect documents and data points together)

XML is hierarchical in nature in that it defines the structure of the information, such as family
tree with parent/child relationships. It permits users to define or create their own tags and
elements and grants nesting [18].

XML defines its grammar for others to use. It provides a formal syntax for describing the
relationships between entities, elements and attributes that makes up a XML document. The
syntax is used to tell the system how it can recognise the component parts of each document.
XML is strict about its syntax [29]. E.g. all the markup tags used must consists of matching
start and end tags, like: <name>Fred</name>

By defining the role of each element of text, users can check if each component of the
document occurs in a valid place. E.g. it checks that users do not accidentally enter a third–
level heading without having first entered a second-level heading.

Although XML is able to do many things, XML is not [13]:

 a predefined set of tags. XML does not define these tags itself. It essentially lays
down the procedures for defining them

 a standardised template for producing particular types of documents
 a standardised way of coding text

8.0 Extensibility

XML’s strength is its ability to describe and structure data. This means that XML can be used
to define (to extend) to other vocabularies. That is, XML-based languages can be “extended”
to support unique and diverse data structure requirements, such as commerce, chemistry, and
cooking recipe [5]. This extensibility of XML comes from its metalanguage capabilities.

Hence, any XML user can define the data descriptions and structures to his requirements. And
this data description can be shared with others.

9.0 Metalanguage and Metadata

A metalanguage is a language that is used to describe other languages. XML is a
metalanguage as it is used to define a set of data element tags, vocabularies and applications.

Metadata can be defined as "information about the data". In XML’s context, the metadata
describes data element tags or attributes. The XML metadata can tag data to provide meaning,
content, or context [1], [5].

Chapter 3: XML Overview 14

In a XML document, DTDs are used to define what these tags mean, and what the data
elements represents. For example, the number “0”:

 could mean a temperature reading, using a temperature tag, <Celsius>0</Celsius>;
 or, the balance in a bank account, using a dollar tag, <Dollars>0</Dollars>

Although both values are zero, using the respective tags, one can now tell the difference and
perhaps manipulate them accordingly.

10.0 The Importance of Metadata

Data and information are valuable and critical assets to most organizations. Unfortunately, in
most legacy systems, these assets are stored in data repositories that does not support easy
data access or retrieval, nor allow easy cross-platform data sharing or exchange [25].

Using XML metadata capabilities, data access or exchange is possible for legacy systems.
Such systems can exploit XML tags for database access, or for migrating into a new
capability without having the need to use additional software [5]. This means that without the
need for modifications, any application can use the same data.

Hence, metadata presents a competitive advantage to users as it facilitates the use of the
already-available data. With metadata, seamless data sharing and transfer can be done.

11.0 Outputting XML Documents

XML documents are output-medium neutral as no output control is defined in the documents.
Users can use additional technologies to associate output controls and formatting to the XML
tags and structure. Output possibilities include browsers, language processors, mobile
devices, printed page, etc. To illustrate how powerful and diverse this capability can be,
consider the scenario of picking up XML-enabled emails as voice messages through the
mobile phone [29].

A wide range of output support exists to handle output formatting. For example:

 Cascading Style Sheets (CSS)
 Extensible Style Sheet Language (XSL)
 Extensible Style Sheet language for Transformations (XSLT)

12.0. Transforming and Re-Formatting Documents

XML supports data transformation and re-formatting. Transforming data from internal
formats to those acceptable for data exchange is important. For example, two parties may
want to electronically exchange data [19]. Using XML, both parties can store the data that
meets their own specific requirements, and yet extract the common elements for data
exchange.

XML transforms data easily because XML separates document content and structure from
output formatting. It is the underlying data that is subjected to the transformation processes
[16]. Furthermore, data transformation can extract a subset of information from a document
by using technologies that can navigate document structures and locate specific elements that
meet certain criteria.

Chapter 3: XML Overview 15

For XML data re-purposing, customizable data elements can be defined for the purpose of
changing the look and feel of, say, a Web page. Or, a Web page can be re-purposed to work
with other devices such as wireless devices or text-to-speech systems.

The ability to easily transform and re-purpose data results in lower costs because [31]:

 Data does not need to be recreated each time it is used
 By using XML to deliver customized Web pages, the user does not have to incur

additional costs of detailed scripting or programming

13.0 Contrast between XML and HTML

XML data is text-based information that has context. The enables XML data to be read by any
application and the context adds meaning and usability to the text. In contrast, HTML data is
primarily free of text in that HTML text is used only for display purposes, not for processing.

XML users can define their own tags and element, nesting and grammars, and they can share
those tags with other users. Users can create DTDs or Schemas that defines the document
structure, as well as logical elements, tags, and attributes. The DTD provides instructions for
parsing the document accurately. After the document is parsed, an XML application can use
the data for display, data processing, manipulation, transformation, and other capabilities that
depend on the data. This is the core concept behind metadata. With no modifications, any
application can use the XML data [5].

XML users can embed data in a document without limiting names or specifying the order.
The data element tags, as defined by the DTD, serve a similar purpose as, say, the tables in a
database. When a user uses a XML document, he can decide on a level of detail for its DTD
and document structure. And other users can build on top of the standard, or ignore details as
appropriate [13]. Hence, if Toyota creates a DTD for a document that only uses
<customer_name>, Ford Motors can use the same document and add tags for <first_name>
and <middle_initial>. Toyota can use the new document and include this new capability in its
applications. Or it can continue to use its existing applications, which will ignore the new tags
with no significant loss in processing.

In summary, XML differs from HTML in these main areas [5], [33]:

1. HTML defines how elements are displayed. XML defines what those elements
contain.

2. HTML uses pre-defined tags. XML is extensible, allowing tags to be defined by the

user. New tags and attribute names for data can be defined at will. Data can be
structured not only in accordance to formal criteria (such as document header, body
text, etc.), but also by referring to its contents.

3. Searching HTML documents produces inaccurate results because no context exists

for the data contained in it. XML allows data to be searched more accurately and
easily as XML provides the context.

4. Unlike HTML, XML is self-describing. This means that an application can interpret

XML data without prior knowledge of its data structure.

One limitation of XML is that binary information cannot be embedded in the body of the
XML document. On the other hand, encoding information in plain text with non-proprietary
tags might be better than using proprietary and platform dependent binary formats.

Chapter 3: XML Overview 16

Chapter 3: XML Overview 17

14.0 The XML History

Please refer to Appendix A

15.0 The XML Standards

Please refer to Appendix B

16.0. The XML Landscape

Please refer to Appendix C

Chapter 4

XML Features, Benefits and Capabilities

Information and data interchange is the cornerstone for many business applications today. This
chapter describes the features, benefits and capabilities of XML from a management’s perspective.
This is by no means a complete list as new features and capabilities are being explored and discovered.
But it covers the most basic and important ones.

1.0 Introduction

Most business transactions require the need to exchange data, information and documents.
Often, data and information will have to be prepared, transmitted, tracked, queried, etc.

XML makes possible many tasks that are previously not possible with HTML. XML is
designed to be powerful, yet easy for users to manipulate. For example, data exchange could
be a nightmare if the data has to be massaged, manipulated, and translated for each new
application. Consider the situation if data needs to be transferred from a catalogue to an
invoice to an inventory to a bill-of-materials. It would require at least three different
steps to re-format the data for each specific application. With XML, data for all of the above
applications can be easily reused without re-formatting the data each time. There is no
necessity to pre-agree on rows, columns, syntax, or other data formats, because all that
information is included with the XML document [18], [3].

2.0 The Features, Benefits and Advantages of using XML

Some of the features, benefits and advantages of using XML are listed below:

2.1 Universal Data Exchange Format

XML is a standard for defining data across application or industry domains. Data can be
shared across many sources.

Although, many computer standards are cross-platform and cross-application, data from one
platform or application may not work on another platform or application without the need to
do some intervening data massaging [5]. XML eliminates that extra step by providing a
universal data transfer format that is platform and application independent. This enables
interoperability and easy application integration. It also means that the application is able to
work with legacy and future systems. For example, a XML-enabled database can be
integrated with existing database applications. The XML document that is not in database
format could easily be represented in a database format [29]. Vice-versa, if the components of
an XML document are stored in a database, the results of a database query could be presented
as an XML document.

Chapter 4: XML Features, Benefits and Capabilities 18

2.2 Self-Describing Data

A universal data exchange format alone does not guarantee interoperable access of data. Data
exchange applications require uniform standards for communications [5]. Such standards
include the data element types and a common definition of the element types. The use of
metadata in XML addresses this requirement. For example, in traditional databases, data
records typically require schemas to be set up. However, by using XML metadata in the form
of tags and attributes, documents can be stored without such schemas. As the tags are self-
describing, when reading a XML document, a user would know that the number “60” in
<AGE>60</AGE> refers to “age” and not, “weight”. The meaning of a number is clearly and
unmistakably associated with the number itself.

Many legacy data are lost simply because there is no documentation on how one actually
reads the data. For example, a Lotus 1-2-3 file on a 15-year old, 5.25-inch floppy disk may be
irretrievable, not without investing time and resources to retrieve the data. And data in even
lesser-known digital format may be lost forever. XML removes this possibility [16]. Suppose
the following XML code fragment has been found. It has survived the ravages of time.

<PERSON ID=”p1100 ” SEX==”M ”>
<NAME>
<GIVEN>Andrew</GIVEN>
<SURNAME>Ang</SURNAME>
</NAME>
<BIRTH>
<DATE>27 April 1918</DATE>
</BIRTH>
<DEATH>
<DATE>24 November 1999</DATE></DEATH>
</PERSON>

We can have a good idea that this fragment of codes describes a man, whose name is Andrew
Ang, whose date of birth is April 27, 1918, and who died on November 24, 1999.

Hence, self-describing data ensures usability through the years. Most commercial entities
have the legal obligation to store their business records for a certain period of time. And if
required, they must be able to reference the records very reliably and quickly. But how will
they ensure their digitised records will remain understandable, say, 10 years from now?
XML’s self-describing format solves this problem as the content, relationship, and meaning
of any data can be captured [5]. The information will remain understandable even if the
applications that created it are long gone and forgotten.

2.3 Structured Information

XML’s format supports structured information. When data is created using an XML editor,
the user not only input the data, but also defines the structural relationships of the data. This
means that document structures can be nested to virtually any level of complexity [5].

Being structured, XML facilitates the use of context and meaning. The tags, attributes and
element structure provide context information to interpret the meaning of the content. Users
can specify a vocabulary that defines the elements in the document, and the relationship
between the elements. Users can define their own tags and the structural relationship of the
data elements with the help of a DTD or schema [16]. For example, a XML search engine

Chapter 4: XML Features, Benefits and Capabilities 19

would be able to understand the term “Lotus”, and allow car lovers, or flower-lovers, to
retrieve two entirely different sets of documents based on the context of the query.

XML is able to handle large, complex, tree structures. Furthermore, users can selectively
update individual elements (granularity) or whole subsections, rather than having to republish
complete documents. In contrast, a HTML Web page must be refreshed each time there is a
change, no matter how minute [19].

2.4 Extensibility

XML is extensible in that users can create entirely new tags, modify existing tags, define new
meanings, and share them with others. Specific document vocabularies can be created.

The extensibility of XML makes it relevant to industries, and application types. It means that
users have full control when customizing their data, because there is no predefining of any
tags. Users are able to exchange data without worrying about whether or not the other person
can receive the data, or whether the person has the particular proprietary software that was
used to create the data [25].

To read or modify documents, neither the sender nor the receiver will need special support
like complicated plug-ins. A sender can send documents to people outside of the industry,
knowing that the recipient will at least be able to view the documents. This extensibility
makes XML a good fit when getting different systems to work with each other [19].

2.5 Open non-proprietary, vendor-neutral Standard

XML is an open, non-proprietary, vendor-neutral standard. Interoperability between old and
new, as well as heterogeneous systems is ensured. Being an open standard, users from one
company can create an application and data that other companies will be able to use.

As a non-proprietary standard, XML is not encumbered by intellectual property restrictions.
Users are protected from vendors who often change their proprietary standards [16]. For
potential companies making an investment decision in XML technology, this is reassuring as
it maximizes the lifetime of their investment.

Users can use any tool that understands XML. There will be many commercial tools available
to help users to author, manage, and deliver it. Users will not be locked into a particular
application simply because that is what their data is already written in, or because it is all their
receivers can accept [29].

2.6 Loosely Coupled Architecture

XML contains data and the metadata about the data. It does not specify any specific way in
which the data should be processed. It does not put any limitations on how the data is to be
handled or displayed. The data sender does not need to know the details of how the receiver
intends to process the data. Hence, it has a loosely coupled framework.

Systems that are built on a loosely coupled XML integration framework are future-proof
because changes to the computing environment will not affect XML data exchange. XML
documents can be freely exchanged across different platforms and applications as long as the

Chapter 4: XML Features, Benefits and Capabilities 20

applications are XML-enabled. Any XML-enabled application can access and manipulate the
data contained in the XML document [11], [19].

3.0 Capabilities

Following is a summary of some of XML’s capabilities:

3.1 Multi-Dimensional Document Processing

A plain text file is considered one-dimensional. The user can read the text file. A HTML text
file is two-dimensional. The user can read and display the file. A XML file is a multi-
dimensional document. The user can read, display, and process the file in multiple
applications.

If a user migrates from a flat text, through HTML to XML, the degree of utility provided by
adding different types of markup to the text increases dramatically. Consider a relational
database management filing system (DBMS). In its native form, most database technology is
not able to handle data such as documents, image, audio, digital signatures, etc. [19].
Typically, DBMS tends to ‘flatten’ the world of data into tables (2-dimensional structures).
But the real world is not flat, nor 2-dimensional. It is full of complex relationships between
different types of files, references, hierarchies, etc. Hence, it would not be possible to store
the data in the DBMS.

XML offers a solution as it able to handle multi-dimensional data. Users can store, retrieve,
manage, search, and distribute them from a single source, while at the same time, preserving
the relationship of the data [13].

3.2 Textual and Language Independent

XML is able to support Unicode and multilingual documents. It has built-in support for texts
for all the alphabets. Being language independent, it does not need standard binary coding or
storage format [5].

Language independence fosters immense interoperability between heterogeneous systems.

3.3 Data Validity Checking

As XML documents come with built in error and validity checking, it provides the means to
validate data formats to ensure content correctness.

XML users can specify the vocabularies to define the elements in a document, and the
relations between these data elements. As users define their own tags and create the structural
relationship of the elements, XML parsers can be used to check the validity and integrity of
the data. This makes it easy to validate the structure and content of the document. Provided
that a schema has been referenced and adhered to, the XML parser is able to provide content
validation by ensuring that all the required fields are provided and in the right order [3].

For example, a XML document may contain a description of its vocabulary for use by
applications that need to perform validation of the data contained in that document, before,

Chapter 4: XML Features, Benefits and Capabilities 21

say, populating a database. A XML Schema is used to verify that all elements are correctly
specified, in the right order, and that values fall within acceptable pre-determined ranges.

With XML parsers, application codes can be quickly developed. It allows users to easily
generate XML document as XML parsers allows users to code faster by giving them a parser
for all their XML documents [11].

3.4 Vocabulary Conversion Capability

XML enables automatic, repeatable transformations of XML vocabularies. Transformation
from one XML vocabulary to another is a commonly required for data exchange and
application integration. Some examples of transformation are [3]:

 To convert name tags
 To selectively extract data
 To convert data types

Some transformations can be more complex. For example, if one system holds ‘Date of Birth’
and another requires ‘Age’, some computation must be applied to produce one from the other.

3.5 Easy creation of different views of the same document

As XML tags describe the meaning of the data and not the presentation, the look and feel of a
XML document can be easily controlled (by using XSL style sheets). This means that the
look and feel of a document (e.g. a web page) can be changed without touching the content of
the document [12]. Different software is not required in order to get a different view of the
data.

Multiple presentations of the same content can be easily and quickly rendered. Users can get
different ways of looking at the document as each time a different style sheet is used to the
same document, a different view is obtained. Furthermore, using style sheets, users can
define mechanisms for sending data to any type of output device. They also have granular
control over what information is to be published [5]. With XML style sheets, the cost and
time it takes for users to deliver information to whomever they need, and in whatever
appropriate output format will be reduced.

3.6 Efficient Server-Side Processing

XML is able to produce documents that functions independently of the server. For example,
users can download and manipulate a document off-line without involving the server.

A XML document is like a container of structured information. Once downloaded, it can be
re-processed locally. Users can process the data at any point. This is unlike a HTML
document, which presents a fixed view to the user. It must be re-generated at the server-side if
this view is to be changed [29].

3.7 Flexibility of Content, Code and Formatting

XML documents can be visualized in terms of associations between content, code, and output
formatting. Each of them takes a number of forms [31]:

Chapter 4: XML Features, Benefits and Capabilities 22

Chapter 4: XML Features, Benefits and Capabilities 23

 Users can use the whole content, or selectively extract some of it, or selectively
update or transform other parts of the content

 Users can use different programs with the content
 Users can at anytime apply appropriate output formatting, based on the output

medium in use

3.8 Data Comparison and Aggregation Capability

The XML document tree structure enables documents to be compared and aggregated
efficiently, element by element.

4.0 Conclusion

Although XML offers many benefits to the user, there seems to be a lot of hype surrounding
the use of XML and its perceived benefits. It is said that XML technology is not
revolutionary, at least in the approach to solving general computing problems [31]. Problems
such as interoperability of code and data, both across and within, different platforms and
application boundaries have been around for many years.

Therefore, it can be said that XML technologies, by using the most successful strategies and
techniques that have been improved and refined over the years, has provided the solution to
these general computing problems. Hence, this has made XML better positioned to handle
new problems, and making it an obvious choice for data exchange.

Chapter 5

XML Security

The adoption of XML systems requires the use of XML security mechanisms to address security
requirements such as data privacy, authentication and confidentiality. This chapter describes:

 The need for security for XML documents
 XML and security
 Uses of XML Digital Signatures

1.0 Introduction

One basic goal of XML is to enable the sending, receiving and processing of data. As with
other technologies, such data transfer require effective security mechanisms for XML-enabled
documents. However, existing security mechanisms like Secure Socket Layer (SSL) do not
sufficiently address some of the security requirements for XML.

Some of the general security requirements of are [30]:

1. Ensuring long-term authenticity
E.g. Who sent them? Did the document actually come from the purported sender?

2. Protecting data confidentiality
E.g. No one else can access or copy the data

3. Ensuring data integrity
E.g. Has the data been modified in transit?

4. Supporting non-repudiation
E.g. Can the sender deny sending them? Can they deny the contents of the data?

In a typical XML transaction like the issuance of e-receipts, the transaction requires some
degree of authentication. And if transactions involve multiple parties, different parts of a
message may need different types of authentication, for different recipients [22]. For example,
in a purchase order, the payment portion from a customer could be extracted and sent to the
Finance department, and then to the bank. Likewise, instructions and messages relating to the
purchase may need authentication at the Purchasing department as a protection against
forgery.

Ensuring data confidentiality is another important requirement. As with authentication,
granularity below the document level is often required [23]. For example, staff residence
phone numbers could be less confidential than say, salary information. Or, a customer’s credit
card number is more sensitive than his age. Hence, by encrypting different fields with
different keys, the fields can be secured to different classes of recipients.

2.0 The need for Security for XML Documents

Non-XML security mechanisms do not fully ensure secured transactions for XML documents.
While generally adequate for low-value transactions, most of these security mechanisms do

Chapter 5: XML Security 24

not provide the enhanced security or flexibility as would be required in high-value
transactions, or protection of the sensitive data that was transmitted [23]. While security
requirements such as confidentiality and authentication can be obtained by using mechanisms
such as Secure Multipurpose Internet Mail Extensions (S/MIME) or Pretty Good Privacy
(PGP), using them will require additional non-XML mechanisms that may have different
XML concepts. Furthermore, such mechanisms may clash with the XML system.

For point-to-point security between the sender and receiver, one can use non-XML
mechanisms like the Secure Sockets Layer (SSL), IP Security (IPSEC), or Transport Layer
Security (TLS). SSL for example, provides for the secure interchange of data between a
browser and server. But once received, the data is usually left unprotected on the server. But,
the important point to note is that SSL protects the data in transit, when its confidentiality is
comparatively, far less likely to be attacked [30]. Sniffing IP packets in transit to obtain a
person’s credit card number is not as efficient as breaking into a database containing
thousands of credit card numbers.

This problem is multiplied where a message is routed from server to server. If the data itself
were encrypted, instead of just its transport, it would help reduce the incidents of unencrypted
data left vulnerable on the servers.

Furthermore, non-XML secured channels provide only one level of confidentiality for all
material sent through that channel. They have limited authentication provisions. After data
have been stored, the data [2]:

1. has no confidentiality because it was decrypted as it exited the secure channel
2. has no integrity protection
3. are not associated with any authentication from that secure channel that could be

forwarded to or recognised by a third party

Hence, effective XML security mechanisms are required to support the authentication and
confidentiality of documents, or sections of documents.

3.0 XML and Security: Digital Signatures

One advantage XML brings to security is the ability to integrate with other XML data
vocabularies. For example, an authentication protocol in XML may contain information from
another XML vocabulary [26]. The advantage of different security protocols using XML,
instead of separate binary formats, is that the protocols will be able to better understand and
work with each other.

However, the very features making XML powerful for commercial transactions (e.g. features
such as being semantically rich, structured data, text-based, etc.) provide both opportunities
and challenges for the application of digital signature operations to XML-encoded data. For
example, consider a situation where a XML document flow between personnel of a company,
and where a digital signature implies some sort of commitment or assertion. Here, each
personnel may want to sign only that portion for which they are responsible for and assume
some level of liability. Non-XML-enabled signature standard does not provide syntax for
capturing this type of high-granularity signature, or the mechanisms for expressing which
portion a personnel wants to sign. However, XML signature standard allows such granular
flexibility [2].

Key to developing effective security mechanisms is the placement of security within the
architecture. Within a network protocol stack, security mechanisms can be placed at many
different levels. Generally, security placed at a lower layer results in a better end-to-end

Chapter 5: XML Security 25

security solution [22]. This is because all the information in the layers above is protected.
However, the higher the level, the easier it is to combine the security data with the
application. Furthermore, a finer granulation of security can be achieved.

A portable security mechanism is one where data can be stored and reused in different
protocols As XML is always the top layer of a protocol stack, XML security mechanisms are
more portable than lower level security mechanisms. As long as domains understand and are
able to process the necessary XML vocabularies, they can make use of the same XML
security mechanisms. E.g. a XML signature is retained by default, as they are part of the
application data structure. But security data structures that are built into the sockets’ API or
the IP headers are generally discarded before being processed [15].

Generally, security at the IP layer (IPsec) can prevent attacks such as denial of service and
create virtual private networks. Security at the socket layer (SSL) can ensure data
confidentiality. It provides authentication for server and client using the Diffie-Hellman
protocol. Hence, SSL authentication and encryption can provide integrity for non-portable
data [26].

4.0 Uses of XML Digital Signature

XML digital signatures could be used in the following applications [30]:

4.1 Digital signature of Web page

By signing a Web page, users will be ensured the data conveyed is authentic. For example,
when a document displayed as a web page is signed, it indicates that the document is genuine.
This method is preferable to obtaining the document using a secure link channel to an
authenticated server, because it is the document that is to be authenticated, not the server, nor
the secured connection. Additionally, the document can be placed at a different location and
still retain the security of the digital signature.

4.2 Trust mechanisms that are machine interpretable

If the XML digital signature standard is combined with a logic-processing language, the
decision can be done by the machine based on the logical rules set up by a client where the
trust decisions have been laid out logically by the client machine [26].

For example, a decision to download code from an unknown company might pose a security
threat. As the signed code and the public key certificate connect code to organisation, the
client machine could gather signed statements on the company from various sources like
auditors and business analysts, to determine the company’s financial health. The accumulated
information could then be presented to the client for decision-making.

4.3 Security protocol using XML Signature

If there is an authentication protocol that results in the authenticated client receiving an
authenticated token at the end of the process, the token can be used to verify these credentials
to other parties. An XML-enabled token can contain data created using the multitude of XML
vocabularies [24]. The XML signature of the data residing in the token will indicate the
authentication server’s security approval.

Chapter 5: XML Security 26

Chapter 5: XML Security 27

5.0 Conclusion

XML security mechanisms must ensure data authentication, access control, confidentiality,
integrity and non-repudiation.

 Authentication and access control separate users who are allowed to perform certain
actions from those who are not allowed

 Confidentiality ensures that messages are kept secret between sender and recipient
 Integrity ensures that messages cannot be altered without being noticed
 Non-repudiation services prevents parties from the denial of an action

These are all required by users to prevent fraud, abuse, or actions not permitted by the user.

Chapter 6

XML Digital Signature

The adoption of XML for doing business across the Internet requires the same, if not better, security
guarantees as the real world. This section describes the use of XML digital signatures. The focus is not
on the nooks and crannies of the specifications, but on the basic reason for its existence, the
fundamental properties that define an XML signature and examples of such signature.

1.0 Introduction

XML signature standards are digital signatures designed for use in XML transactions. The
standard defines a schema for capturing the result of a digital signature operation applied to
arbitrary digital data. It is a specific messaging syntax. The signature object itself appears in
XML syntax and makes use of a number of XML standards to define its precise XML format.

The objectives of XML digital signature are:

 to ensure in-transit data are complete and accurate (for data integrity)
 to provide a mechanism to control and manage the data that is passed and presented

Alternative mechanisms such as SSL, protects data in transit. However, in the case of SSL for
example, it does not meet the requirements of XML data that are not in transit. Hence, the
reasons for using XML signatures are to meet some of these requirements [23]:

 Portability.
XML signatures are portable. Entwined within the XML data, the signature forms a
constituent part of the data. It is not a sub-layer that will be stripped off as the data is
retrieved from the network

 Flexibility and granularity.
XML signatures can be made to refer to parts of a document, or to many documents.

A XML digital signature is a rich, complex, cryptographic object. The signature syntax is
designed to provide high degrees of flexibility and extensibility, and is conducive to almost
any signature operation. However, as it relies on a large number of disparate XML and
cryptographic technologies, the culmination of such technologies results in a signature syntax
that can be quite abstract and daunting [2].

A non-XML signature results in raw binary output of a relatively fixed size. For example:

 RSA signature, the output is related to the key-size used
 DSA signature, the output is related to the representation of the encoding used

But instead of raw binary digital signatures, XML signatures are related to messaging syntax
(e.g. PKCS). The structure is specified in relation to the source documents. For signature
verification, it can encompass a cryptographic key or X.509 certificate.

A XML signature is a XML document. It has all the properties of a well-formed XML
document. All the information needed to process the digital signature (e.g. the verification

Chapter 6: XML Digital Signature 28

information) is embedded within the signature representation. Except for the actual signature
and digest values, all the elements and attributes are processed as “normal” XML [15].

XML signatures require minimal processing, even if the applications do not have XML
signing or verification capabilities. There is no complexity in the signature process or
cryptographic operations used. The added complexity lies in the additional processing
features demanded by XML-enabled documents.

To verify a raw digital signature, the signer must provide to the verifier, information such as
the type of algorithm used, recipient details, and the verification key. Once these parameters
are configured, it is usually difficult to change them.

Even before XML, solutions are available for extensible and flexible processing, For
example, ASN.1 and BER encoding, together with a hierarchical set of object identifiers. The
algorithm object identifier is a unique bit-string, encoded in raw binary format that conforms
to BER/DER. It is used to identify a type of signature algorithm [15]. However, this method
of compact binary representation to inform the other party the type of signature algorithm to
be used during the application processing can be a tedious and complex process.

So rather than using the algorithm object identifiers, being a text-based format, XML
Signatures uses a text-based algorithm identifier to denote the same RSA signature with the
SHA-1 hash function (http://www.w3.org/2000/09/xmldsig#rsa-sha1).

Although the non-XML algorithms object identifier is more compact and smaller
representation, the pervasiveness of XML parsers makes processing text-based identifier more
viable and much simpler.

XML Signature has tried to avoid compact binary representations, although for reason of
backward compatibility, the binary-coded identifiers are sometimes still used in the creation
of the signature [14].

2.0 XML Signature Semantics

A XML Signature associates the contents of a signature manifest with a key via a strong one-
way transformation. That is, the signature defines a one-way signature operation based on a
signing key.

Like normal paper signatures, digital signatures have wide applications for associating data
(or document) with an individual. In the case of XML Signatures, while this trust semantics is
useful and practical, it does not by itself associate a signing key with an individual. Instead,
the XML Signature provides the means to establish the association. Establishing the
association is done by packaging the verification key within the XML Signature, via an
element. The XML Signature presents the verification material (either the public key, or the
certificate containing the public key) to the application, leaving the issue of trust to the
application [23].

Mechanisms to validate the identity of a signer based on public key information already exist,
e.g. the certificate path validation. However, the decoupling of entity verification from the
actual signature provides the application more flexibility in deciding its own custom trust
mechanisms, for example, to check if an entity has the authority to sign a document, or a
portion of a document.

Chapter 6: XML Digital Signature 29

It must be noted that not all private keys are authorised as signing keys. Also, a trusted
authority might have restrictions on private key usage for a particular individual, or, an
individual’s key might have been revoked altogether. These additional trust semantics lie
outside the scope of the XML digital signature [14].

Just like other documents, XML documents can be digitally signed in its entirety (as a whole).
However, difficulty arises if only parts of a document need to be signed, and/or by different
users, or when this needs to be done with selective encryption. It may not be practical to
mandate a particular sequence of sectional encryption by specified people acting in order, as
successful processing of the different parts of the document will depend on knowing this.

Furthermore, as a digital signature asserts that a certain private key has been used to
authenticate something, it is prudent that a signer view the item to be signed in plain text. This
may mean having to decrypt part of something already encrypted for other reasons. In some
cases, encrypted data may have to be encrypted further, as part of a larger set [23].

The more the different possibilities are considered in sets of transactions involving a single
XML document, the more the potential for complexity (e.g. a series of records used in a
workflow sequence, processed by many different applications and different users)

3.0 XML Digital Signature Standard

XML signature standard defines a schema that captures the result of a digital signature
operation when applied to XML data. This standard defines the syntax required to sign either
all, or a part of a XML instance.

XML digital signatures have the flexibility to sign only specific portions of the XML tree, as
opposed to the complete document. This flexibility is useful when [15]:

 the XML document have different components that are authored, at different times,
by different parties, with each party signing only those elements relevant to them

 ensuring the integrity of certain portions of the XML document, while leaving open

the possibility for other portions of the document to be changed later. For example, a
signed XML document is delivered to a user for editing. If the signature were over
the full XML document, any changes made to the default document values would
invalidate the original signature

However, this flexibility, does not lend itself well where a misplaced space results in a
completely different fingerprint that is unverifiable. To address this, the use of
canonicalization (XML-C14N) has been defined in a W3C document called Canonical XML.
It follows a pre-identified set of processing rules to structure an instance into its simplest form
[14]. The rules are to ensure that instances are structured the same way, every time. Hence,
the signature will not be confused due to stylistic differences, such as misplaced spaces.

4.0 The Components of an XML Signature Element

The components of a skeletal structure of a Signature element are as follows [24]:

<Signature>
 <SignedInfo>

Chapter 6: XML Digital Signature 30

 (CanonicalizationMethod)

 (SignatureMethod)
 (<Reference (URI=)>
 (Transforms)
 (DigestMethod)
 (DigestValue)
 </Reference>
 </SignedInfo>
 (SignatureValue)
 (KeyInfo)
 (Object)
</Signature>

The explanations to some of the main components are as follows [24]:

Component

Explanation

(<Reference (URI=)>

Each resource to be signed has its own <Reference> element,
identified by the URI attribute

(Transforms)

The <Transform> element specifies an ordered list of processing
steps that were applied to the referenced resource’s content before it
was digested

(DigestValue)

The <DigestValue> element carries the value of the digest of the
referenced resource

(SignatureValue)

The <SignatureValue> element carries the value of the encrypted
digest of the <SignedInfo> element

(KeyInfo)

The <KeyInfo> element indicates the key to be used to validate the
signature. Possible forms for identification include certificates, key
names, and information

5.0 The Signature Generation Procedure

XML Signature uses canonicalization processes to format a XML document into a standard
format. The signature is generated from a hash over the canonical form of a signature
manifest. This “manifest” is expressed using XML, and is a list of resources to be signed.

Syntactic variations over logically equivalent documents are allowed in XML. Hence, it is
possible for two XML documents to differ, but still be semantically equivalent. For example,
the addition of one white space inside XML start and end tags [4].

E.g. 1: <Reference URI= “ManifestList”/>

Chapter 6: XML Digital Signature 31

E.g. 2: the element modified by adding a space: <Reference URI= “ManifestList”/>

For hash functions, this will be a problem as they are sensitive to single byte differences. In
both examples, if a SHA-1 hash is applied to the elements, the SHA-1 hash output will
produce different octet-strings. Although the hash values do not match each example, the
semantics of the empty XML element (e.g. 2) are exactly the same (e.g. 1).

Any change to the message to which a cryptographic hash algorithm is applied will result in a
different value. This ensures confidence as to the integrity of the message. This is acceptable
for normal use. However, complications will result in situations where two XML documents
differ in exact textual comparison, though they may be logically equivalent.

To remove the syntactic differences from semantically equivalent XML documents, a
canonicalization algorithm is applied to the signature manifest. This algorithm is used to
ensure that the same bytes are hashed and signed subsequently [4]. Hence, this solution
provides for a more robust normalization algorithm within XML Signature processing.

6.0 Hash Functions

When applied with digital signatures, hash functions are convenient to use. It reduces the size
of what is being signed and it speeds up the signing process.

When XML Signatures are generated, hash functions are used in two scenarios: In the
manifest, each resource is hashed. The collection of resources is hashed a second time during
the signing operation

The manifest is especially useful if the number of resources to be included increases. Without
a manifest, applying a signature algorithm to each resource is time-consuming as it hinders
the creation and verification of an XML Signature. So, instead of signing each resource, each
resource is hashed. Then, the hash value and resource location is included in the manifest,
resulting in a much faster process [24].

7.0 Canonical XML Specification

The canonicalization process is used to create a XML document into a standard format. The
canonical specification describes a method for generating a physical representation of a
document (known as the canonical form). Permissible variations is allowed, ensuring that if
two documents have the same canonical form, these two documents are to be considered
logically equivalent within a given application context.

The XML canonicalization process is to ensure that instances are structured the same way,
every time. Documents having the same intrinsic information will have the same binary
representation, and hence, the same signature. The signatures will not be confused due to the
stylistic differences (e.g. extra or misplaced spaces). It allows the precise binary form of the
original digital signature to be recaptured when validating, without requiring the retention of
the original XML document [15].

This is useful in digital signing as textual variants that have no logical change implications,
should not automatically mean that the integrity of a document, or that the authentication of
the sender is suspect. This is something that might occur as a result of different treatment by

Chapter 6: XML Digital Signature 32

different tools (e.g. parsers) generating different texts and, in turn, different message digests.
During both signature generation and validation computing, the message digest should be
done on the canonical form. If the digest matches, it confirms that the canonical forms over
which they were computed also match, even though the textual forms may differ [14].

8.0 The Information in XML Digital Signatures

The XML digital signature can be divided into four parts [2]:

(1) The description of what is being signed
(2) The digital signature itself
(3) Key information (optional), and
(4) Other relevant information (optional)

The operation must provide information to ensure that the signatures are verified.

The information in a signed XML instance contains [14]:

1. The Canonicalization Method
This identifies the rules and structures an XML instance prior to signature. It ensures
the proper form of the data contents being signed, so that the verification algorithm
will succeed if the data contents have not been modified

2. The Signature Method

This identifies the algorithm used to sign the message digest.

3. The Digest Method
This identifies the algorithm that creates the message digest signed by the signature
method. It ensures that data contents are processed with the same algorithm when
comparing the resulting values.

4. The Digest Value

Contains the message digest (the fingerprint to the data contents being signed), i.e.
the fixed-string output when data is processed through a message digest algorithm.

5. The Reference Information

This refers to information about the data contents.

6. The Signature Properties (optional)
The purpose is to add context to a signature. E.g.: serial number. The items can be
included in the reference information.

The core generating process of signing a XML instance begins with the canonicalization
method. The rest of the signing process is similar to a typical digital signature process.

9.0 XML Signature Examples

XML signatures can be applied to any arbitrary data content. (e.g. any binary file such as a
GIF image). Besides varying the data type, classification of XML signatures are as follows
[4]:

Chapter 6: XML Digital Signature 33

1. Those that are inside the XML Signature element are termed ‘enveloping signatures’
(refer to diagram below)

XML Document
XML Signature

signedInfo
Reference

Object
Signed Data

2. Those that are outside of, but surrounding the signature element is called ‘enveloped

signature’ (refer to diagram below)

Signed Document

XML Signature

signedInfo

Reference

3. Those that are outside and disjoint from the signature element (the data is external to the

signature element) are termed ‘detached’ signatures (refer to diagram below, a detached
signature over two data items)

XML Document

Signed data

XML Signature
signedInfo
Reference

Reference

Chapter 6: XML Digital Signature 34

Because the signature elements is able to sign multiple pieces of data, there can be any two, or
all three types of signatures at the same time (i.e. enveloping, enveloped or detached).

The code example 1 below shows an instance of a ‘detached’ signature [36]. (These series of
examples were taken from the W3C signature recommendation document)

[01] <Signature Id="MyFirstSignature"

xmlns="http://www.w3.org/2000/09/xmldsig#">
[02] <signedInfo>
[03] <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"/>
[04] <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
[05] <Reference URI="http://www.w3.org/TR/2000/REC-xhtml1-20000126/">
[06] <Transforms>
[07] <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
[08] </Transforms>
[09] <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
[10] <DigestValue>j6lwx3rvEPO0vKtMup4NbeVu8nk=</DigestValue>
[11] </Reference>
[12] </SignedInfo>
[13] <SignatureValue>MC0CFFrVLtRlk=...</SignatureValue>
[14] <KeyInfo>
[15a] <KeyValue>
[15b] <DSAKeyValue>
[15c] <p>...</p><Q>...</Q><G>...</G><Y>...</Y>
[15d] </DSAKeyValue>
[15e] </KeyValue>
[16] </KeyInfo>
[17] </Signature>

Example 1: An example of a simple detached signature

Comments to code example 1:

 The information that is signed is the “signedInfo” element (Lines 02 to 12)
 Reference to the algorithms used in calculating the “SignatureValue” element is

shown within the signed section, while that element itself is outside the signed section
(Line 13)

 The “SignatureMethod” reference (Line 04) is to the algorithm used to convert the
canonicalized “SignedInfo” into the “SignatureValue”. It is a combination of a key-
dependent algorithm and a digest algorithm, i.e. DSA and SHA-1, with other
manipulation such as padding

 The “KeyInfo” element (Lines 14 to 16, this element is optional) indicates the key
used to validate the signature

10.0 Transforms

There is a wide range of possibilities to the order in which encryption, signing, and modifying
can take place. For example, a user may need to enter data into a document that is already
partially signed (or partially encrypted). And he may need to do this without preventing
subsequent validation (or decryption).

Chapter 6: XML Digital Signature 35

The code example 2 below shows how a recipient is informed on the correct order of
decryption and signature verification [4]. Note that the example shows the part of the
document to be signed. Within the “order” element, the personal and financial details of the
“cardinfo” element (lines 7 to 11), are in clear text but some encrypted data is already present
(line 12).

[01] <order Id="order">
[02] <item>
[03] <title>XML and Java</title>
[04] <price>100.0</price>
[05] <quantity>1</quantity>
[06] </item>
[07] <cardinfo>
[08] <name>Your Name</name>
[09] <expiration>04/2002</expiration>
[10] <number>5283 8304 6232 0010</number>
[11] </cardinfo>
[12] <EncryptedData Id="enc1"xmlns="http://www.w3.org/2001/04/xmlenc#">...

</EncryptedData>
[13] </order>

Example 2: “Order” element within an XML document

The code example 3 below shows the “Signature” element (lines 1 to 26) includes the
previous “order” element (lines 16 to 24), with its earlier plain text “cardinfo” element
encrypted (line 22)

There are two transform references:

 decryption (lines 6 to 8) and
 canonicalization (line 9)

The decryption transform instructs the signature verifier to decrypt all the encrypted data
except for the one specified on line 7 in the “DataRef” element. After the “EncryptedData”
element (line 22) is decrypted, the “order” element is canonicalized, and the signature duly
verified.

[01] <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
[02] <SignedInfo>
[03] ...
[04] <Reference URI="#order">
[05] <Transforms>
[06] <Transform Algorithm="http://www.w3.org/2001/04/xmlenc#decryption">
[07] <DataReference URI="#enc1" xmlns="http://www.w3.org/2001/04/xmlenc#"/>
[08] </Transform>
[09] <Transform Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
[10] </Transforms>
[11] ...
[12] </Reference>
[13] </SignedInfo>
[14] <SignatureValue>...</SignatureValue>
[15] <Object>
[16] <order Id="order">

Chapter 6: XML Digital Signature 36

[17] <item>
[18] <title>XML and Java</title>
[19] <price>100.0</price>
[20] <quantity>1</quantity>
[21] </item>
[22] <EncryptedData Id="enc2"

xmlns="http://www.w3.org/2001/04/xmlenc#">...</EncryptedData>
[23] <EncryptedData Id="enc1"

xmlns="http://www.w3.org/2001/04/xmlenc#">...</EncryptedData>
[24] </order>
[25] </Object>
[26] </Signature>

Example 3: “Order” document after signing and further encrypting and now showing
transform information

11.0 The Validation Process

Signature validation requires the data object that was signed to be accessible. The signature
will indicate the location of the original signed object. This can be referenced by a URI within
the XML signature that is [24]:

 embedded within the XML signature (the signature is the “parent”);
 reside within the same resource as the XML signature (the signature is a “sibling”);
 has its XML signature embedded within itself (the signature is the “child).

This validation process is broken into three parts. XML Signature specifies that all these steps
must be fulfilled before the signature is considered valid. The three parts are:

1. The signer’s public key must be obtained. This key can be obtained by using the key
information provided by the XML signature. In some cases, the public key may
already be known.

2. Signature validation. The signature value can be checked by processing the
“SignInfo” element according to the stated canonicalization and hash algorithms to
obtain a hash value, and comparing the hash against the signature using the public
key (as in normal signature verification).

3. Reference validation. The URI references to be checked for the correct digest value.

Verification failure would result if one of the references fails to provide the correct digest. If a
signer does not wish to make reference validation compulsory, the references can be put in a
Manifest element (enveloping signature).

12.0 XML Digital Signature Recommendation

The W3C’s has officially recommended a new XML digital signature specification standard.
The signature will be used to sign XML documents to enable recipients to verify the identity
of the sender and the integrity of the data. It is formally known as XML-Signature Syntax and
Processing

The recommendation, while built in XML and designed for XML documents, can be used to
sign other kinds of documents [36].

Chapter 6: XML Digital Signature 37

Chapter 6: XML Digital Signature 38

13.0 Conclusion

XML digital signature is a critical foundation on top of which users can build more secure
applications. By offering basic data integrity and authentication tools, XML digital signatures
provide new functionalities for applications that enable different types of trusted transactions.

Chapter 7

XML Digital Signature Considerations

XML digital signature is specially designed to meet the needs of XML-enabled documents. This
chapter looks at the various impacts and implication of XML digital signatures when it is used in the
various applications

1.0 Introduction

Like non-XML digital signatures (e.g. PKCS), XML digital signatures adds data integrity,
authentication and support for non-repudiation to the data that they sign. But unlike non-XML
digital signatures, a XML digital signature is designed to both account for, and take advantage
of the features of XML.

Regardless of whether it is XML-enabled or otherwise, a digital signature although hard to
forge, is not foolproof. For example, the private key can be stolen, or an attack can be made
on the digital signature protocols by changing the signed data. Changing the data that is
signed would invalidate the signature. Hence, due considerations should be given when using
them.

2.0 Implications of Security in XML-enabled Documents

Accompanying XML’s many advantages and features are critical security issues. For
example, as XML is primarily used in Internet-based communication, this provides the
opportunity for others to sniff or spoof data. While XML allows business data to be more
efficiently shared between multiple parties such as suppliers, customers, and governmental
regulators, security breaches with such data can have very adverse consequences to the user.

A simple comparison between XML data and conventional data is as follows:

XML DATA CONVENTIONAL DATA

Open standard Closed standard

Self describing Context dependent

Loose coupling Tight coupling

Asynchronous Synchronous

Decentralized Centralized

Heterogeneous environment Homogenous environment

From a security standpoint, a specification that is “self-describing”, has “loose coupling”, etc.
would raise questions on whether the data could be secured. Thus, ensuring the security of
XML data can be very complex [4], [26]. For example, when designing the flow of data
within applications, considerations must be made to the four primary security objectives of

Chapter 7: XML Digital Signature Considerations 39

confidentiality, integrity, authentication, and non-repudiation. Due to the flexible and
ephemeral nature of XML, the user must establish and apply these objectives carefully.

As described in the earlier chapter, XML security mechanisms play a major role in ensuring
secured systems. By using a data driven approach to security, XML entails more than just
having, say, physical firewalls. For example, XML security mechanisms are able to specify
exactly who gets to see what. It enables a single item of content to contain data elements of
varying levels of sensitivity, and access permissions.

XML security mechanisms must extent across the user’s entire network. Because of the
presence of extranets, the user’s data extends far beyond the user’s physical control [2].
Hence, the user’s security must be able to reach out as far as its data. XML’s open system
approach will allow for a company-wide security implementation that is manageable.

3.0 Impact on the architecture of the Internet

As new XML security mechanisms are put into place, new security architectures for the
Internet might be required [2]. For example:

 The authentication by Web services for access control to other Web services
 In e-commerce payments service, authorisation tokens enabling access. The

communication between customer and payment service could be in XML, and the
tokens in XML format, signed by the payments service

 Website providing valuable information could have controlled permissions for
publishing and accessing

 Key revocation and registration issues can be dealt with using separate services.
 Components of existing PKI functionality can be offered as Web services. New

services to support a PKI could emerge, such as attribute certificates and
authorisation servers.

As web services are still largely untested today, only time will tell if such ideas will happen.

4.0 Implications on Transforms

The transforms mechanism makes it easy to sign data derived from processing the content of
an identified resource. For example, when signing forms, an XML application might permit
users to enter certain data fields without invalidating a previous signature. The application
could use a Transform (e.g. XPath-based) to exclude those portions of data fields that a user
would change [4]. For this application, the things to be noted are:

 Only what is signed is considered secure as Signatures over a transformed document
do not secure any information discarded by the transforms. Only what is signed is
secure. Critical to signing XML is the use of canonicalization to ensure that all
internal entities and XML namespaces are expanded within the data being signed. For
example, all entities are replaced with their definitions. Hence, information that is
not signed, but is merely part of an envelope containing signed information, is not
secure. For example, unsigned recipient headers accompanying signed information
within an encrypted envelope do not have their authenticity or integrity protected.

 Only what can be “seen” should be signed. If the intention of signing is to convey the

consent of a user, then it would be necessary to secure, as closely as possible, the data
as presented to that user. XML applications could achieve this by signing what was

Chapter 7: XML Digital Signature Considerations 40

shown to the user (e.g. the screen image). However, the result would be difficult for
subsequent manipulation. If the data is viewed though a browser, it would be
reasonable to secure the browser version. However, it would not be practical, nor
worthwhile to sign and preserve a complete copy of the browser and operating system
that the browser was using.

 The signer should “see” what is signed. In situations where a user is ‘seeing’ and

consenting (or approving) something, the user should sign only what he is able to
‘see’. Automated mechanisms that trust a transformed document on the basis of a
valid signature should operate over the data that was transformed and signed, and not
the original, pre-transformation data.

For applications that operate over the original or intermediary data, potential weaknesses can
occur between the original and transformed data. For example, consider a canonicalization
algorithm that normalises character case from uppercase to lowercase. By changing the
character case, a malicious user could introduce changes that are normalised and therefore not
consequential to signature validity. Hence, the user could for example, influence the result of
a query [23]. There will be a risk if the change is normalised for signature validation but the
processor operates over the original data, and returns a different result than intended.

5.0 Implications on Security Assertion

The use of other XML standards could give XML signatures specific meaning. For example,
in the Security Assertion markup language, the XML digital signature provides the
authorisation for restricted actions.

As the Signature forms part of a security assertion, the technological aspects of digital
signatures needs to be considered. For example, a signature validation requires:

(1) the retrieval of key information
(2) the checking of the revocation lists and
(3) verifying the signature

The reason for checking the revocation list is to negate compromised private keys. However,
where security assertions are long term, a revocation mechanism for these assertions needs to
be part of the infrastructure. In other words, although the private key is still valid, the
assertions made for it are not [24].

6.0 Implication on Multiple Layer Security

When determining a communication session between authenticating users, employing a
security structure that relies solely of XML security mechanisms might not be efficient. This
is because relying on XML Signature for signing all the messages passed could be
cumbersome. End-to-end security using mechanisms like SSL, or IPSec, may be sufficient
and efficient enough for such transactions. Therefore, XML security mechanisms should be
used only where it has an advantage over existing protocols [4].

However, new XML security mechanisms may find particular niches of application. For
example, XML authentication tokens could be used at the beginning of a session, or XML
Signature could be used at the end of a session for binding both parties to an agreement.

Chapter 7: XML Digital Signature Considerations 41

7.0 Implication of Digital Signature Strength

Signature strength refers to the difficulty to forge a signature on new or modified data. Like
most signatures, signature strength depends on all the links in the security chain [14]. It
includes:

 The signature and digest algorithms used
 The strength of the key generation
 The key size
 The security of the key, certificate authentication, distribution and storage

mechanisms
 The certificate chain validation policy for certificate-based systems
 The protection of cryptographic processing from hostile observation and tempering

Hence, the overall security of the system depends on the security and the integrity of its
operating procedures, the personnel, the administrative enforcement of the procedures, etc.
However, some of these factors are beyond the scope of XML Signatures.

8.0 Implications on Legislation

There could be legislative problems with XML digital signature standard [2]. For example:

 Referring to the detached signatures, how can one decide whether reference
validation was successful at a certain time in the past?

 A party may deny responsibility by stating that the XML document to which the
signature referred was never present at the URI stated by the signature. And
consequently, the signature was never valid.

 If a signature was removed on a certain date, but remained in a cache, is the party still
responsible for a signature validated after this date?

 With the use of external references in order to be accessed, a URI could require either
a cookie or authentication. Hence, consider a situation when a decision is made
basing on information from an external website, and a digital signature is used
referencing that website to ensure that the decision is valid only if the information is
not changed. This information is copy-righted, and therefore cannot be placed in the
document itself. Consequently, a detached signature is the only valid method.
However, if a cookie is needed to obtain access to the website, it will be difficult to
create the digital signature, and allow the reference validation to work properly

9.0 Conclusion

The XML digital signature is a generic standard, covering most methods by which a digital
signature in XML format could be employed. As the signature standard provides a very
flexible mechanism, there could be many ways to misuse them. This could result in producing
insecure or misleading results.

One way to prevent abuse is to narrowly define a digital signature used in a document (or
protocol). For example, a protocol may require that:

 the signature to be enveloped only
 the allowed transformations to be restricted to a few cases
 key information is required in one particular format

Chapter 7: XML Digital Signature Considerations 42

Chapter 7: XML Digital Signature Considerations 43

It is expected that there will be major effort to create XML security services. Perhaps,
eventually, security at the XML level will settle down to a number of core areas, with other
security necessities remaining at other layers, e.g. SSL or IPSec.

Chapter 8

The Future of XML

The successful adoption of XML depends on many factors. From the viewpoint of XML as a useful
technology for data handling, this chapter explores the issues of the so-called XML hype, its myths,
implications and impact, risks and future challenges

A critical analysis of the dissertation is included in the chapter

1.0 Introduction

XML has been touted as the data exchange standard that will revolutionise businesses.
Generating a lot of buzz in the technology world, XML is seen as the du jour problem solver,
the missing piece in the interface puzzle that will among other things, reduce costs, increase
speed, enable a host of new application models, etc.

XML is seen as the solution to the long-standing challenge of interfacing new and legacy
systems, and was the ideal solution for an age-old problem, interoperability. Hence, by
adopting XML, users can ignore the problems of incompatible standards, devices, and
formats. It was as if XML alone could act as a universal translator, a future-proofer.

But some of the basic truths of XML are [34]:

 XML is not a format. It is only a way of making formats. It sets rules for making sets
of rules

 Using XML does not guarantee well-designed results. For example, if a XML user
designs a particular format, the format is no more automatically interoperable than are
two languages that use the same alphabets. Just as not all words in a sentence made
from similar alphabets belong to same language (e.g. English and French), not all
XML standards work together either.

 XML is no more resistant to the "garbage-in, garbage-out" syndrome than any other
technologies

Therefore, the vision of XML as a pain-free method of describing and working with data is
far from the perceived truth [20], [28]. For example:

 Designing a good XML format takes a lot of effort as it requires a rigorous
description of the problems. Using XML does not remove the pain of having to
describe the data upfront. The payoff comes only if it is rolled out carefully enough.
For example, if implemented thoughtlessly, many problems will arise as a result of an
improperly described data

 Interoperability is not an engineering issue. It is a business issue. Even if a XML
technical standard is complete, the business standard is not. Because these standards
have become important competitive tools, incompatibility still exists because of the
reluctance of companies not wanting to cooperate with one another. As a result,
defining unique XML tags might lead to compatibility problems later.

Chapter 8: The future of XML 44

2.0 Implications of being Application Independent

One benefit of having common structures and an open standard is that it enables low degrees
of application coupling.

Programming languages like Java has enabled portable code for cross-platform capability.
Having portable data was seen as the next step for application-independent capability. But
having data portability is a greater challenge than having portable codes. For data to become
portable, (1) separating content from presentation and (2) defining specific vocabularies are
required [26]. The vocabularies enable the data transfer between applications without loss of
meaning.

Although the advantages of data portability are obvious, enabling it is problematic. One
reason is due to the sheer size of existing non-XML data. Another reason is the diversity of
businesses. This great diversity means that many different vocabularies need to be developed.
This problem can be solved only if industries and application vendors mutually define and
agree on these specific vocabularies [25]. This represents one of the biggest problems towards
having data portability. If data from different sources adhere to common structures,
applications can be built to consolidate the data and present it in a unified and portable way.

3.0 Implications on enabling Systems Integration

The use of commonly structured information is a key enabler for systems integration.
However, this does not solve nor address all the technical issues as different systems integrate
structured information differently. Hence, having structured information is only one part of
the solution.

As mentioned earlier, the other part of the solution is in having standard vocabularies that
must be defined, agreed upon, and used. For example, just because Airline “X” defines and
uses the Air Travel Markup Language for flight information, it does not mean Airline “Y”
will use it. And Airline “Z” might not know that ATML exists.

While XML is a standard, each XML vendor can interpret how to define. At best, this might
result in application inconsistencies; and at worst, the creation of many different proprietary
vocabularies [21]. Hence, one cannot assume that by using XML, it will completely alleviate
dependencies on different vendors. It may simplify things. Conversely, it may introduce new
interoperability problems.

4.0 Implications for HTML

XML adoption does not signal the death of HTML. Although comparatively, HTML is
inflexible, it has served many needs. Furthermore, there may be little commercial benefit in
converting existing HTML data systems to XML, as it will take a lot of effort and money
[28]. By reasons of its sheer size, it is envisaged that HTML will be used for many more
years, perhaps with a focus on document-centric applications, for documents that are intended
for human consumption (as opposed to machine consumption)

But because XML enables users to do tasks that users could not do with HTML, XML might
gain dominance over time [5]. Therefore, for potential XML user, it would be a safe strategy
to consider using XML for new applications, or for major upgrades.

Chapter 8: The future of XML 45

5.0 Implications of Metadata

Business data are valuable, critical assets. Unfortunately, in most legacy systems today, these
data are stored in data repositories that does not support easy access or retrieval, nor allow
easy cross-platform data exchange.

One way to improve data access is by the use of metadata. Well-defined metadata gives a user
a competitive advantage as it enables a more seamless data sharing and transfers [28]. But the
key for successful implementation is to have carefully defined, and universally accepted
metadata.

Although the metadata concept is easy to understand, they are difficult to manage. And it is
not easy to define them at consistent levels of detail. For instance a metadata may be used to:

 describe a collection of documents; or
 describe data elements within a specific document.

As users can create their own tags, they may not all tag their data in exactly the same way.
This might result in having XML data requiring lots of effort to aggregate.

Access to XML data is dependent on the ability to interpret its structure. Since users create
their own semantics, the key to unlocking these XML documents is to publish them (as DTD
files or schemas) [5], [6]. But even with DTDs or schemas, the data might not be readily
accessible without published standards, secure access, and applications to process and
translate them.

6.0 Implications of an Open Structure

XML is said to enable universal access to data. For example, the recipe vocabulary example
in Chapter 2 has a vocabulary structure consisting of Name, Portions, Ingredients, and
Method. The idea is if all recipes are structured similarly, others can just parse that recipe
data, and automatically enter the data into, say, a recipe database.

Although this idea is technologically good, there is one inherent problem. Owners of valuable
or sensitive content would not want others to be able to automatically take their content.
Publishers of copyrighted web content will be deprived of their advertisement revenue if
anyone could just take their contents, minus say, the advertisements that originally came with
the contents [25].

So why would content owners want their content to be well structured externally? Why
would companies share strategic data with partners and competitors? In such cases, there are
no incentives for making data so easily exportable. And if website owners resist XML, there
would be no incentive for browsers to support it.

If data is difficult to extract, but easy to search for, there could be a stronger business case. In
industries where there is little competition, there could be a good reason for a common
vocabulary because it could mean that companies can sell more, efficiently. But in industries
where there is great competition, companies will have no incentive at all to co-operate as it
will lead to even more competition [6].

Chapter 8: The future of XML 46

7.0 Impact on Databases

As with most systems, there is usually a trade-off when using XML databases. While XML
databases enable users to extract XML data without using special formatting statements, the
loss comes in the transacting logging and overall scalability of the system. Most XML
databases today lack the mature transaction logging of larger more scalable systems (e.g.
Oracle, SQL Server). As a result, it becomes slower as the number of records grows.

Modern databases systems such as Server 2000 have included XML parsers that allow users
to easily create XML datasets. However, older database systems do not have this capability.
Hence, to get the data out of these older databases, third party software would be required.

To import or export data, XML database systems would need an XML parser or translator.
For XML data import, a translate document must be created to tell the system what fields
exist and, if it is a relational database, what other tables exist and how these tables are related
[7]. These translators may be in the form of a style sheet (e.g. XSLT) or a schema definition.

Although XML database implementations are typically fast, applications requiring large
amounts of data to be processed (e.g. assembled, searched, sorted) to complex user rules are
better implemented using traditional database systems (e.g. SQL Server). While XML may
act as an intermediary to a database, it is not a replacement. Hence, existing traditional
database applications are by no means obsolete. XML should not be used in situations where
the data can be more effectively handled using existing technologies or infrastructure.

Furthermore, the use of extra tags in XML databases could increase the file size significantly.
Typically, to about two to three times the normal size of a flat file. This is because of the tags
surrounding each data element [25]. To solve this problem, data should not be stored with the
tags.

8.0 Impact on Skills Base

Like other technologies, XML has an impact on the existing skill base of developers.
Although the generic syntax of XML is similar to HTML, there are many concepts associated
with XML that are not familiar.

XML does not necessarily simplify things. For example, while it successfully separates code
from presentation, most implementations of XSL (the language that describes how to present
the XML data) are just as complex as other programming languages.

Hence, developers will have to acquire new skills and new ways of approaching problems
[35]. They must understand the capabilities, the various implications and issues associated
with using XML.

9.0 Impact on Infrastructure

XML is designed for use over a public network, instead of proprietary networks. Hence, users
need not have to invest resources in building direct links with multiple trading exchanges.

XML standards are implemented in software. But as they operate in a networked
environment, they inevitably have an effect on the infrastructure. For example, using XML
can either reduce or increase network traffic by the following:

Chapter 8: The future of XML 47

 The use of large XML document, containing extensive data, can increase network

traffic
 But, the increased use of local, client-side, processing can reduce network traffic

For the applications infrastructure, XML enables integration of disparate systems as data
exchange between systems is made possible by using a common “language” platform [10].

10.0 Challenges of XML Adoption

Since its introduction, few technologies have been hyped as much as XML. While XML is
seen by many as a key enabler to many things, it is really only the first step. For example,
XML tags are supposed to provide a simple data format. But the intelligent defining of these
tags, plus the common adherence to their standard usage will determine the real long-term
value of XML. Potential XML users must not assume that XML to be a cure-all [35]. They
should carefully analyze their requirements in order to apply XML appropriately.

One of the most visible drawbacks to XML is the requirement of a wide variety of standard
vocabularies (DTDs and schemas). Already, there are several different XML vocabularies
promoted by different industry coalitions or bodies like the W3C, and OASIS (Organization
for the Advancement of Structured Information Standards). Hundreds of XML standards have
been created since the introduction of XML [21], [36].

Furthermore, the issue of vocabulary convergence among different industries appears difficult
to achieve. The effort to converge should not occur in a vacuum. For example, if a company
tries to develop its own applications and DTDs, it may find that its development is incom-
patible with other companies [28]. Hence, collaboration with other parties is the key to
success.

XML technical standards are currently in a state of flux. The creation of many different
proprietary technical standards can undermine the successful adoption of XML. The flood of
specification development endangers the discovery of solid XML standards.

Companies looking to use XML to gain a competitive edge must consider carefully
parameters like process formats, integration interfaces, and business semantics. Compromises
should be made to ensure widespread interoperability [10]. However, such trade-offs may
make XML documents larger and less focused, but the increase in data sharing will be more
than offset the compromise.

XML is a simple idea with powerful implications. But, it is no longer the pure, exciting force
for openness we believed it to be. The potential for commercial success and the subsequent
profits to be made has changed the nature of the XML industry to one that is quite political in
nature. Hence, no one quite knows exactly how XML adoption will shape up eventually.

Chapter 8: The future of XML 48

Chapter 8: The future of XML 49

11.0 Critical Appraisal

The dissertation has achieved its aim to investigate and examine XML’s features and
capabilities and its security considerations, implications and impact to XML-enabled
documents study, albeit the final dissertation submission is slightly modified from the original
proposal.

The original dissertation proposal was to focus on two main issues of XML. They are:

1. What is XML? Covering the evolution of the Internet and markup languages such
as SGML and HTML to XML itself, including the features, benefits and
applications of XML

2. XML enabled security mechanisms, covering
i. XML Digital Signatures; and

ii. XML Encryption

During the research work and the actual writing of the dissertation, I discovered that the
coverage of the proposed dissertation topic is too wide to be contained within the set
maximum limit of 20,000 words.

On hindsight, the biggest error was to attempt to cover too-wide a topic. A major rework was
hence necessary, but the dilemma was whether to be cover XML is depth or in breadth. To
cover XML in greater depth would mean limiting the range of topics, but to cover XML in
wider breadth would necessitate skimping through the varied topics.

The final decision was to leave out the topic on XML Encryption altogether. The two reasons
for this decision were that firstly, I felt that sufficient focus should be made to research on the
need for security mechanisms for XML-enable documents as opposed to non-XML-enabled
documents. Secondly, greater focus was made on XML Digital Signature as the XML
Encryption effort is not as mature as that associated with the XML Digital Signature
standards at the point of writing.

The second error was that I spend too long a time to complete the dissertation. The
unfortunate result was that research work on XML topics done earlier became obsolete, and
the information obtained became less impactful and somewhat less ‘original’ when reported
later.

Hence, this dissertation can by no means considered fully completed, nor a perfect piece of
work. However, within the constraints of time and the cap to the length of the dissertation, I
feel that the original objective of this dissertation has to a large extend, been met.

APPENDIX A

XML HISTORY

 EVENT

1969 Generalized Markup Language (GML), Charles Goldfarb, et. Al., IBM

1974 Standard Generalized Markup Language (SGML), Charles Goldfarb, et. al., IBM

1986 SGML adopted as a standard by ISO

1989 HTTP + HTML = World Wide Web, Tim Berners Lee, CERN

1996 Work commences on XML at World Wide Web Consortium (W3C)

1998 XML 1.0 specification released (W3C)

Present On-going proliferation of XML as a major data representation language for the
WWW; adoption by various sectors of industry and academia

Appendix A: XML History 50

APPENDIX B

XML STANDARDS

XML should not be viewed as a single technology as it is a collection of technologies
surrounding a common core. The XML family of standards is managed by the W3C.

Some of the XML standards are:

 XML 1.0 - The base specification

 XML Namespaces – A means of identifying and separating XML vocabularies

 XSL (Extensible Style Language) – Includes XSLT for document transformation

 XPath, XLink, XPointer – Linking and addressing languages

 XML Schemas and XML Query

Appendix B: XML Standards 51

APPENDIX C

THE XML LANDSCAPE

XML.ORG

I N D U S T R Y S O L U T I O N S

XMLife S12 OTA FpML HL7

….

C R O S S - I N D U S T R Y S O L U T I O N S

OBI, OTP, … OAG TBD
XML/EDI,
RosettaNet ….

OMG, IETF, etc.

S O F T W A R E P R O D U C T S

B u i l d R u n M a n a g e

HTML, JSP, EJB,
SVG, …

SMTP, POP3, MIME,
…..

SQL, JDBC,
….

WebDAV, XMI,
.…

W3C

C O R E T E C H N O L O G Y

T C P / I P , H T T P , J a v a , X M L , … .

__

Appendix C: XML Landscape 52

B i b l i o g r a p h y

(The page numbers, etc., listed at the end of references indicate the parts of the reference actually used
in the preparation of this dissertation)

[1] K. Ahmed, et al., XML Meta Data, Wrox Press Ltd, 2001, ISBN 1861004516, pp. 6-24,

32-57.

[2] B. Dournaee, XML Security, McGraw-Hill, USA, 2002, ISBN 0-07-219399-9, pp. 32-

49, 107-146, 148-192.

[3] B. DuCharme, XML: The Annotated Specification, Prentice Hall, USA, 1999, ISBN 0-

13-082676-6, pp. 3-63, 65-84.

[4] D.E. Eastlake, and K. Niles, Secure XML, The New Syntax for Signatures and

Encryption, Addison-Wesley, USA, 2003, ISBN 0-201-75605-6, pp. 4-11, 35-48, 207-
233, 248-252

[5] E. R. Harold, XML Bible, IDG Books Worldwide Inc, USA, 1999, ISBN 0-7645-3236-

7, pp. 3-6, 80, 83, 134-160, 192-246.

[6] C. Horak, The XML Shockware, Software AG, Germany, 2000, pp. 3-17.

[7] IGNIA LLC., “Behind the Hype: XML”, IGNIA LLC, USA, 2000, sections “Benefits’,

and “Tradeoffs”.

[8] F. Jung, XML Backgrounder Technology and Applications, Software AG, Germany,

2000, pp. 4-8.

 [9] K. Kanakamedala, J. King, and G. Ramsdell, “The truth about XML”, The McKinsey

Quarterly Number 3, USA, 2003, para 4-8.

[10] G. C. Kendell, “Three Myths of XML”, XML.com, O’Reilly & Associates, Inc., USA,

2001, sections “XML is Open and Free”, “Schemas are Magical”, and “XML is the
Dog, Not the Tail”.

[11] A. Kotok, “Extensible and More”, XML.com, O’Reilly & Associates, Inc. USA, 2000,

sections “Frameworks”, “Functions” and “Verticals”.

[12] A. Kotok, “Making XML Work in Business”, XML.com, O’Reilly & Associates, Inc.

USA, 2000, sections “Information Management”, and “The Early Payoff”.

[13] M. Leventhal, D. Lewis, et al., Designing XML Internet Applications, Prentice Hall,

USA, 1998, ISBN 0-13-616822-1, pp. 5-49, 51-79, 81-119.

[14] P. Lindstrom, “Special Report: The Language of XML Security”, Network Magazine,

USA, 2001, section “XML Signature”, “XML for Security Functions”, and “The Power
of XML”.

[15] M. Mactaggart, “An Introduction to XML Encryption and XML Signature”, IBM

developerWorks, 2001, para. 2-3, 5-8.

Bibliography 53

[16] D. Martin, M. Birbeck, M. Kay, Michael; et al., Professional XML, Wrox Press Ltd,
USA, 2000, ISBN 1-861003-11-0, pp. 9-11, 13, 15, 16, 21, 25, 152, 155, 157.

[17] H. Maruyama, and Imamura, “Element-Wise XML Encryption”, IBM Research, Tokyo

Research Laboratory, Japan, 2000, para. “Requirements”.

[18] S. McGrath, XML by Example: Building E-Commerce Applications, Prentice Hall.

USA, 1998, ISBN 0-13-960162-7, pp. 6-28, 32-68, 75-86.

[19] D. Megginson, Structuring XML Document, Prentice Hall, USA, 1998, ISBN 0-13-

642299-3, pp. 3-40, 120-142, 144-172.

[20] NEDARC, “What is XML, and Can It Live Up to its Hype?”, National EMSC Data

Analysis Resource Centre, USA, section “Some Disadvantages”.

[21] Organization for the Advancement of Structured Information Standards (OASIS).

http://www.oasis-open.org/

[22] A. Selkirk, “Using XML Security Mechanisms”, BT Technology Journal, Vol 19, No.

3, UK, 2001, pp. 35-43.

[23] A. Selkirk, “XML and Security”, BT Technology Journal, Vol 19, No. 3, UK, 2001, pp.

23-34.

[24] E. Simon, and P. Madsen, “An Introduction to XML Digital Signatures”, XML.com,

O’Reilly & Associates, Inc. USA, 2001, section “Introduction to XML Signatures”, and
“The Components of an XML Signature”.

[25] S. H. Simon, XML E-Commerce Solutions for Business and IT Managers, McGraw-

Hill, USA, 2001, ISBN 0-07-137188-5, pp. 1-21, 23-40, 42-62, 87-104, 172-184, 207-
215.

[26] S. St. Laurent, XML A Primer, Hungry Minds, Inc. USA, 1998, ISBN 0-76-454777-1,

chap. 1-4, 12.

[27] S. St. Laurent, “When XML Gets Ugly”, XML.com, O’Reilly & Associates, Inc. USA,

2000, para. 4, 8-11.

[28] B. Swart, “XML – Hit or Hype?”, TDMWeb, USA, 2003, para. 2-6.

[29] D. Tidwell, “Introduction to XML”, IBM developerWorks, 1999, sections “What is

XML?”, “How Can I Use XML Today?”, and “Applying XML”.

[30] D. Tidwell, “The XML Security Suite: Increasing the Security of e-business”, IBM

developerWorks, 2000, para 2-3, “Overview of Web security”.

[31] R. Turner, The Essential Guide to XML Technologies, Prentice Hall, USA, 2002 ISBN

0-13-065565-1, pp. 1-54, 66, 70-71.

[32] W3C, “Extensible Markup Language (XML) 1.0”, (Second Edition), W3C.Org

Technical Reports, World Wide Web Journal, O’Reilly & Associates, USA, 2000,
section 1.1, W3 Recommendation XML 1.0

Bibliography 54

Bibliography 55

[33] N. Walsh, “What is XML?”, XML.com, O’Reilly & Associates, Inc. USA, 2000,
sections “XML Development Goals”, and “How is XML Defined?”.

[34] S. Withers, “XML: Great Hope or Great Hype?”, Technology and Business

Publication, ZDNet, Australia, 2001, sections “ Communication Difficulties”, “Security
& Authentication”, “Bandwidth Issues”, and “Diverging Standards”.

[35] R. Worden, “XML E-Business Standards: Promises and Pitfalls”, XML.com, O’Reilly

& Associates, Inc. USA, 2000, sections “The Primer”, “The Pitfall”, and “The Way
Forward”.

[36] World Wide Web Consortium (W3C), http://www.w3c.org

	Cover Contents.pdf
	Table of Contents
	CHAPTER 1XML History: The Internet and Markup Languages
	
	1.0The Internet1
	2.0The Web Architecture1
	3.0Interpreting Documents on the Web2
	4.0The Concept of Markup Languages2
	5.0Standard Generalized Markup Language (SGML)2
	6.0Hypertext Markup Language (HTML)3
	7.0After SGML and HTML, Comes XML4

	CHAPTER 2Structured Information
	
	1.0Introduction5
	2.0The Need for Information Exchange5
	3.0Data and Information5
	4.0Structured Data and Information6
	5.0Providing Context and Vocabularies7
	6.0Data Portability 7
	7.0Benefits of Structured Data8
	8.0Processing Implications of Structured Data9
	9.0Conclusion9

	CHAPTER 3Extensible Markup Language (XML) Overview
	
	1.0Introduction10
	2.0XML History11
	3.0XML’s Goals11
	4.0XML Document Structure12
	5.0Schemas13
	6.0Document Validity and Well-Formness13
	7.0XML’s Core Elements and Functionality14
	8.0Extensibility14
	9.0Metalanguage and Metadata 14
	10.0The Importance of Metadata15
	11.0Outputting XML Documents15
	12.0Transforming and Re-Formatting Documents15
	13.0Contrast between XML and HTML16
	14.0XML History17
	15.0XML Standards17
	18.0XML Landscape17

	CHAPTER 4XML Features, Benefits and Capabilities
	
	1.0Introduction18
	2.0Features, Benefits and Advantages of using XML18
	3.0Capabilities21
	4.0Conclusion23

	CHAPTER 5XML Security
	
	1.0Introduction24
	The need for security for XML Documents24
	XML and Security25
	4.0Uses of XML Digital Signature26
	5.0Conclusion27

	1_XML History.pdf
	Chapter 1
	XML History: The Internet and Markup Languages
	
	1.0The Internet
	2.0The Web Architecture
	3.0Interpreting Documents on the Web
	4.0The Concept of Markup Languages
	5.0Standard Generalized Markup Language (SGML)
	
	5.1The Advantages of SGML
	5.2The Limitations of SGML

	6.0Hypertext Markup Language (HTML)
	
	6.1The Structure of HTML
	6.2HTML Document Presentation
	6.3The Advantages of HTML
	6.4The Limitations of HTML

	7.0After SGML and HTML, Comes XML

	2_Structured Information.pdf
	Chapter 2
	Structured Information
	1.0Introduction
	2.0The Need for Information Exchange
	3.0Data and Information
	4.0Structured Data and Information

	Diving Holiday
	
	
	
	
	
	
	For $390

	5.0Providing Context and Vocabularies
	6.0Data Portability
	7.0Benefits of Structured Data: Application Independence
	8.0Processing Implications of Structured Data
	9.0Conclusion

	3_XML Overview.pdf
	Chapter 3
	Extensible Markup Language (XML): An Overview
	1.0Introduction
	2.0The XML History
	3.0XML’s Goal
	4.0XML Document Structure
	5.0Schemas
	
	5.1Document Type Definition (DTD)
	5.2XML Schema

	6.0Document Validity and Well-Formness
	7.0XML’s Core Elements and Functionality
	8.0Extensibility
	9.0Metalanguage and Metadata
	10.0The Importance of Metadata
	11.0Outputting XML Documents
	12.0.Transforming and Re-Formatting Documents
	13.0Contrast between XML and HTML
	14.0The XML History
	15.0The XML Standards
	16.0.The XML Landscape

	4_XML Features, Benefits, Capabilities.pdf
	Chapter 4
	XML Features, Benefits and Capabilities

	1.0Introduction
	2.0The Features, Benefits and Advantages of using XML
	
	2.1Universal Data Exchange Format
	2.2Self-Describing Data
	2.3Structured Information
	2.4Extensibility
	2.5Open non-proprietary, vendor-neutral Standard
	2.6Loosely Coupled Architecture
	3.1Multi-Dimensional Document Processing
	3.2Textual and Language Independent
	3.3Data Validity Checking
	3.4Vocabulary Conversion Capability
	3.5Easy creation of different views of the same document
	3.6Efficient Server-Side Processing
	3.7Flexibility of Content, Code and Formatting
	3.8Data Comparison and Aggregation Capability

	4.0Conclusion

	5_XML Security.pdf
	Chapter 5
	XML Security

	Introduction
	2.0The need for Security for XML Documents
	4.0Uses of XML Digital Signature

	4.1Digital signature of Web page
	
	
	
	
	
	
	
	4.2Trust mechanisms that are machine interpretable

	5.0Conclusion

	6_XML Digital Signature.pdf
	Chapter 6
	XML Digital Signature

	Introduction
	2.0XML Signature Semantics
	
	
	
	
	
	3.0XML Digital Signature Standard

	4.0The Components of an XML Signature Element
	5.0The Signature Generation Procedure
	6.0Hash Functions
	
	
	
	
	
	7.0Canonical XML Specification
	9.0XML Signature Examples

	Example 1: An example of a simple detached signature

	10.0Transforms
	
	
	
	
	
	Example 2: “Order” element within an XML document
	11.0The Validation Process
	12.0XML Digital Signature Recommendation

	7_XML Digital Signature Considerations.pdf
	Chapter 7
	XML Digital Signature Considerations

	8_The Future of XML.pdf
	Chapter 8
	The Future of XML

	A critical analysis of the dissertation is included in the chapter

	Appendix A.pdf
	APPENDIX A
	XML HISTORY
	
	
	
	
	
	
	
	APPENDIX AXML HISTORY�EVENT��1969�Generalized Markup Language (GML), Charles Goldfarb, et. Al., IBM��1974�Standard Generalized Markup Language (SGML), Charles Goldfarb, et. al., IBM��1986�SGML adopted as a standard by ISO��1989�HTTP + HTML = World Wi

	Appendix B.pdf
	APPENDIX B
	XML STANDARDS

	Appendix C.pdf
	APPENDIX C
	THE XML LANDSCAPE
	
	
	XML.ORG
	
	INDUSTRY SOLUTIONS
	XMLife
	S12
	OTA
	FpML
	HL7

	CROSS-INDUSTRY SOLUTIONS
	OBI, OTP, …
	OAG
	TBD

	SOFTWARE PRODUCTS
	Build Run Manage

	HTML, JSP, EJB, SVG, …
	SMTP, POP3, MIME, …..
	SQL, JDBC, ….

	W3C
	
	CORE TECHNOLOGY

	Bibliography_Apr 13.pdf
	Bibliography

