

Web Based Information System
for

Unix Servers

R Madhavan

A dissertation submitted in partial fulfillment of the requirements for the
degree of Master of Science in Computer Science in the University of Wales.

Supervisor: Dave Price

University of Wales, Aberystwyth
17 April 2004

 2

DECLARATIONS

The content of this dissertation is the result of my own independent work and

investigation except where otherwise stated. All sources are acknowledged by
explicit references to the bibliography.

Signed: . (R Madhavan)

Date

I declare that this work has not previously been accepted in substance for any
degree and is not being concurrently submitted in candidature for any degree.

Signed: . (R Madhavan)

Date

I hereby give my consent to the dissertation, if successful, to be available for
photocopying and for inter-library loan, and for the title and summary to be made
available to outside organisations.

Signed: . (R Madhavan)

Date

 3

Acknowledgements

I am thankful to my supervisor Dave Price for his time, help and support to
me during this project. I am also grateful to my employer in allowing me to use the
necessary hardware and software required for this project. Finally I would like to
thank my wife and children in tolerating me during this project work and writing the
dissertation.

 4

Abstract

In today’s world of Information Technology (IT) application centric
organisations, there is a requirement to have a range of information about their IT
infrastructure accurately available, on demand, at all times. Servers which are
running large commercial applications and databases, are some of the most critical
components of any enterprise’s IT infrastructure. IT managers, system and database
administrators, application developers and users within that organisation often
demand information about the underlying environment on which applications are
running. The required information is primarily about server hardware, operating
system, customized configuration and so on. In most cases this information is
currently neither available at the right time nor is it accurate.

This project has attempted to develop and implement a web based
information system to provide an easy and single point of access for server
information, especially for Unix based computer systems. The objective is to collect
server related data regularly from any number of Unix servers without any manual
intervention, store the collected data in a central data store, and construct a web site
to provide access to this information within the organization.

While this project succeeded in providing a single point of access for server
information and met the users’ requirements, the system could have been improved
and built to provide additional capabilities and sophistication. Possible ways to
achieve further enhancement and improvements are also discussed in this report.

 5

Contents
1. INTRODUCTION..6

1.1. The need for system information ...6

1.2. Existing ways of retrieval and need for a data collection system6

1.3. Project aim and objectives...7

1.4. Project management ...8

2. REQUIREMENTS ANALYSIS ...11

2.1. Requirements gathering ..11

2.2. User requirements...12

3. OVERALL DESIGN ...14
3.1. Design overview...14

3.2. Choice of tools ...16

4. DETAILED DESIGN AND CODING ...18
4.1. Design of each layer ...18

4.2. Coding of each layer...22

5. TESTING..27
5.1. Testing approach ..27

5.2. Testing and test results..27

5.3. Validation ..30

6. CRITICAL EVALUATION AND CONCLUSIONS33
6.1. Project management ...33

6.2. Design and choice of tools ..33

6.3. Testing and validation...34

6.4. Overall conclusions ..35

Bibliography ...36

Appendix...37

 6

1. INTRODUCTION

1.1. The need for system information

In any large organisation, it is quite common to see many numbers of servers
running wide variety applications and databases supporting that together, support
their business operation. During entire life cycle of the application various people
concerning to that system would need to know about the underlying operating
environment on which that particular application and database are being run. The
people concerned include IT managers, system administrators, database
administrators, application development and maintenance team people and users as
well. The system information sought is related to server hardware, operating system,
detailed configuration and so on. Having this information accurately and at the right
time, contribute to effective application development, system maintenance,
troubleshooting and also timely reporting.

There are many situations in which a system administrator is required to provide
the information about servers to various people. Below are few examples of those
situations.

An application developer is interested in knowing the release and version of
compiler available in the system. This is because, he was told that the compilation
error he is currently facing with his piece of code, is due to a bug in the compiler
itself and this is fixed in the new release of the compiler. The database administrator
of the system would like to know, what operating system patches are currently
installed in the system. This is because of the requirement from RDBMS vendor to
verify whether all necessary operating system patches are installed in the computer,
in order to have the database to run smoothly. An IT infrastructure manager would
like to know current hardware configuration of one of the servers running in his data
center to prepare a report to the company management. The system administrator
himself would probably want to know about the system configurations like
networking, kernel parameters, device configuration and so on.

So it is quite apparent that many different people within the organization need
server related information for various reasons and purposes. And it can also been
seen that these pieces of information are required to solve many day to day problems
which they would be facing with their computer systems. Hence in this context, the
availability of accurate server information at the right time is an essential piece of
data, which help to perform their job in a more effective manner. The availability or
absence of this information could also make a difference in meeting their clients or
customers need on time.

1.2. Existing ways of retrieval and need for a data collection system

Typically the underlying operating environment or the system information is

obtained in one of the following two ways,

 7

1. By referring to a separate system documentation, which is generally
maintained by system administrators of the organization. This document is
either updated periodically or whenever there is a change in system
configuration. The respective system administrator of that particular server
normally does this.

2. In the second method, there is no documentation maintained, but rather
whenever some one requests server related information, system
administrators logon to that particular server and collect the required data
and produce the necessary output.

The disadvantage of the first method is that it requires someone to constantly
update the document in order to keep it as most up to date. The challenge is also to
make the document available and accessible to everyone within the organization.
The second method is totally human dependable and manual which relies on one
person (system administrator) to provide the necessary information. It is hardly
practical to expect the system administrator to be available and reachable at all time.

In this information age, it is not surprising to hear that people expect accurate
information to be accessible at all times and from anywhere. This is no exception
even when it comes to system related information. But it is very obvious that both
these traditional methods of system information access prove very much inadequate
in meeting the expectation of ‘information on demand’. So it is quite natural for
people like IT managers and technical administrators to be disappointed when they
are not able to get the required information accurately and in time. Also in any large
organisations, people sit across different geo-graphical locations working under
different time zones. Hence this also makes it difficult to get information whenever
they need it. Hence there is a need for a better way of providing this information
whenever it is required.

It would be very good if there were an overall system that collected all the
necessary data from any number of servers and provided a single point of access to
retrieve that data. This means, accurate information is provided at any time and also
made accessible from anywhere within the organisation.

1.3. Project aim and objectives

The primary aim of this project is to produce an information system to give a
single point of access through a web interface for server information of AIX, HP-UX
and Solaris operating system based computers. The system development and
implementation was aimed to meet the following four major objectives,

1. The system should collect data from HP-UX, AIX and Solaris servers
(according to the users requirements) automatically and regularly without
any limitation of the number of servers.

2. The collected data should be stored in a single central data repository.

 8

3. A web site to be constructed to provide a web interface to query the data
store and produce the necessary output.

4. The system implementation should also make it easy to include additional
servers for data collection in future.

1.4. Project management

“Effective project management focuses on people, product, process and
project”1 [3]. While the people and product factors are mainly applicable for large
software development projects, I recognised that both process and project were
critical factors to be considered for the successful development and delivery of this
project.

The process factor is essentially about the software development life cycle
(SDLC) methodology (also called as software process model) used to develop the
software and make it operational to meet the customer’s business requirement. On
the other hand, the project factor focuses on the planning and execution of various
phases by identifying the critical milestones and goals. In the next two sections I
discuss the SDLC methodology that was chosen and the overall planning for this
software implementation project.

1.4.1. The software process model

Various process models available today have their own strengths and
weaknesses and I thought the model I select should be an appropriate one to deal
with the nature and complexity of this project. At the beginning of the project, I
believed that the user requirements could be defined very clearly. I also thought
that even though there would be lot of technical challenges ahead in this project,
from the project management point of view this project could be considered as
relatively small and not very complex. The most widely used ‘Classic’ or ‘The
waterfall model’ has come under lot of criticism due to its rigid design and
inflexible approach2 [7]. However, I thought an appropriate change in the coding
and testing phase in the original model would make an appropriate fit for this
project. Since this project is essentially about collection, storing and retrieval of the
data, I have recognized the need of three different programming languages to be
chosen. This means the best approach is to code and test each layer before moving
on to the other layer. This has made me to come up with the model as shown in the
figure 1.1, which is a typical ‘waterfall model’ with a phased approach for coding
and testing phases.

1 Roger S. Pressman (2001) SEPA, 5/e. McGraw-Hill International edition.

2 Centre for Technology in government, A Survey of System Development Process Models,
http://www.ctg.albany.edu/publications/reports/survey_of_sysdev

 9

1.4.2. Project planning

Having decided on a software development process model, the next logical
step was to draw a project plan before embarking on the next phase.

For a very large software project, the planning should essentially comprise of
estimation on number of people required, estimation on cost and the drawing up of a
schedule. While the first two factors are beyond the scope of this project, a proper
project schedule with milestones to reach the final stage is a very important aspect to
be considered for a project of any size and complexity. The project schedule should
accommodate the process model that has been decided and also be reasonable
enough to complete within the given time frame. The schedule was drawn up based
on my own estimation of time for each phase in the life cycle model and the time I
could spend on this project on a weekly basis. The project schedule with activities is
presented in Appendix A.1

Coding Testing

Requirement Analysis

Design

Coding Testing

Coding Testing

Phase 1 (Data collection)

Phase 2 (Data store)

Phase 3 (Data retrieval)

Implementation & final testing

User acceptance

Figure 1.1 Software development life cycle methodology

 10

As part of the background study required to carry out this project, the World
Wide Web was used and proved to be a very valuable resource. In addition to the
traditional source of information and knowledge (mainly text books, which are
mentioned in the bibliography), I have used the knowledge and resources available
in the World Wide Web more extensively in order to carry out this project. These
resources include online manuals, publications as well as various open source
software group’s (PHP, Apache and so on) web sites. Both traditional as well as web
resources, which were used for this project, have been acknowledged in the
bibliography explicitly.

 11

2. REQUIREMENTS ANALYSIS

In research conducted and published by Standish group3 [8], it was discovered
that “incomplete user requirements” and “lack of user involvement” were the top
two reasons for IT project failure. This clearly put the importance and emphasis on
this phase for the overall success of this project. Hence it was decided that at the end
of the requirements study phase, it would be necessary to have the user requirements
listed to form a basis for the overall system development.

Before the requirements was finalised, I had first discussed with selected users
about the scope and requirements. This phase was essentially focused on
requirements gathering and finalizing.

2.1. Requirements gathering

A total of three key users were selected (one from each function namely
system administration, database administration and software development) to form
a group to jointly finalise the requirements. A first discussion was initiated with
these users, which started with the question of ‘what type of computer systems
involved for data collection?’ and ‘what data should be collected?’. Henceforth, over
a period of two weeks both informal and formal discussions led into finalising the
requirements and subsequently a user requirements list for the system were drawn
up. The final requirement (discussed later in chapter 2.2) was drawn out of the
mutual agreement between users and myself, and the following two points are worth
mentioning about compromises, which were made between us.

• It was mentioned that it would be useful to have the system resource utilisation
(CPU and memory) data also collected and reported. But gathering and reporting
this information means, enabling the system activity reporter (SAR) and
processing the collected data. This would require additional setup and disk space
management in each server involved in data collection. Hence it was explained
that taking this requirement would be difficult due to the given reasonable time
frame for this project to complete. Moreover the organisation4 already had a
commercial monitoring tool, which was deployed for this purpose. So if we also
have to do the same then it would be redundant information within the
organisation. Hence it was agreed mutually that this system would exclude the
SAR data reporting as a requirement.

• We also discussed providing the maximum scalability (CPU and memory)
information of the server as part of this information system. But this information
is not really an internal item of data for the servers, but rather it is a
characteristics decided externally by the respective hardware vendor for each
server model. Hence it was decided to exclude this from the requirement and
concentrate on collecting and reporting the internal information of the servers.

3 The Standish group, The CHAOS report. http://www.standishgroup.com
4 Here the organisation is referring to the one in which I carried out this project.

 12

The project schedule was also shared with users and it was also agreed that there
would be an acceptance or validation test to confirm against the agreed requirement
of the system.

2.2. User requirements

This chapter produces a summary of the requirement, which was discussed and
agreed with the users.

Data collection requirements

• The system should collect data from AIX, HP-UX and Solaris operating
system based servers.

• Each server involved in the data collection is referred as ‘host’. The system
should collect data about the host, hardware it is running, operating system
(and it’s related information) and detail about customised configuration.

• Each of these four main categories (namely host, hardware, operating system
and detailed configuration) has many individual items, which should be
collected and reported by the system. These detailed items are presented in
Appendix A.2

• The method of data collection is not of any importance to the users and it was
left to me to decide and implement.

• The data must be updated with the current information at least once in a
week.

Data repository requirement

• The collected data should be stored in a central data store.

• The type of data store is not of importance to the users, however it is
preferred that the central data repository should provide a search capability
(this search capabilities would be used in future) and allow to modify the
data easily.

• The primary purpose of the data store is to hold the current information,
however it is nice to retain the old data for future reference.

Data retrieval or user interface requirements

• It was reconfirmed that a web browser would be the user interface.

• The home page or the first page of the site should list all hosts with the
corresponding application name and provide an option to select the host to
query for information.

 13

• Once a host name is selected and submitted to the web server, the system
should retrieve all required server information from the data store and
display in one single web page.

• The web interface would be used only to query the data store and there

would not be any data upload from the web browser.

• A basic user authentication mechanism is required before any users can
retrieve the data from the web server.

 14

3. OVERALL DESIGN

3.1. Design overview

For the purpose of ease of design, coding and testing, this information system
has been decomposed into three main layers5. They are namely,

1. Data collection layer

2. Data store layer

3. Data retrieval layer

All three layers are implemented within a single Unix server. So essentially
this Unix server (referred as master server) is the core of the entire solution. A HP-
UX based server was chosen for this purpose and the decision to choose this was due
to two main reasons. First, my work place had a HP-UX server for testing purposes
and it was naturally the first thing to see whether this server could be used for this
project purpose. Second, it was also found that Hewlett-Packard company bundle
Apache web server and PHP programming language as part of the overall web
solution under HP-UX. Because both Apache web server and PHP were considered6
for the data retrieval layer, it was decided to use HP-UX as the master server.

Figure 3.1 illustrates the overall system flow. The detailed configuration of
the master server and software packages used are listed in Appendix A.3

3.1.1. Data collection layer overview

The data collection layer is responsible to bring all necessary data from

multiple hosts to the master server before it can be organised in the data store.
Following two choices were considered in choosing the data collection method.

1. Each host initiates the data collection process by itself and sends the collected
output to the master server (push method)

2. Master server initiates the data collection process and gets the collected output
from all hosts (pull method).

The push method needs the collection script to be placed in each host. This means,
if any changes would be made to the script or program7 then it has to be distributed
to all hosts. Failure to update any one host could make the system fail in any one of
the layers.

 On the other hand, the pull method, essentially about having a main program in
the master server, which begin by reading a configuration file for the hosts involved
in data collection and then gets the data from each host. This will make the

5 Henceforth, these three layers will be referred as when required in this report.
6 The choice of tools, is discussed in detail in Section 3.2
7 Changes to script or program normally happen due to bug fix or any enhancement(s) are to be made
to the existing system.

maintenance easy, as it would be necessary to keep only one copy of the data
collection program.

So it was concluded that the pull method would be a better choice considering the
less effort involved in maintaining this environment in the future. Hence I decided
that a single program consisting of different procedures for each operating system
should be written and maintained in the master server. Upon initiation of the data
collection process, this program is sent to the respective target host to collect
necessary data. Once data is collected at the target host, the same script then sends
back the data to the master server for further processing.

m
 Figure 3.1 Design overview and system flow diagra
 15

Host 1

AIX

Host n

Host 2

HP-UX

Host 3

Solaris

Data Data Data Data

getsysinfo.sh

Configuration
File

sysinfo.conf

getsysinfo.sh getsysinfo.sh

getsysinfo.sh

Oracle

Database
SQL loader

sysinfomain.sh

(Unix filesystem)

Apache Web
server

index.php
getinfo.php

Web browser

Query

Results

loaddata.sh

HP-UX Master Server

 16

3.1.2. Data store layer overview

The data store layer is primarily responsible for organising the collected data and
allow the data retrieval layer to retrieve the data. Two types of data store were
considered for this project and it was decided to use a database. The other choice was
to use text files stored directly in the Unix filesystem, but the decision to go with the
database was based on following criteria or reasons,

• The database is a better choice in providing search capabilities.

• Using the database, data could be well organised and structured.

• Database is better at providing data security. In the case of text files, it is
required to have proper file access permissions set for many files and
directories.

• Database is also a preferred choice for dynamic web content applications,
as most of the web applications work seamlessly with many database
management systems in providing dynamic web contents.

While the decision was made to use the database, the question of which database to
use, was not really a trivial decision. This is discussed later in section 3.2.

3.1.3. Data retrieval layer overview

The data retrieval layer is to receive the query from web browser, pass the query
to data store and send results back to web browser. So this layer has two parts, one
the web server portion and the other is a web application portion.

The web server portion is responsible in receiving query from web browser(s)
and pass results back to them.

 The web application portion interacts with the database to extract required
content in response to the query received from web browser.

3.2. Choice of tools

3.2.1. Data collection layer

In selecting the programming language for this layer, two main criteria were
defined. One, the programming language should be able to run under all three
flavours of Unix operating systems (HP-UX, AIX and Solaris). Two, it should be able
to support and have the ability to run Unix system administration commands which
are necessary to collect data from respective hosts. With these criteria in mind, Unix
shell script and Perl programming language were considered for this layer.

Perl programming language was considered to be more sophisticated and flexible
in output formatting. It required me to pick up an additional skill set and hence this
could have an impact on the project schedule. On the other hand, Unix shell scripts

 17

can meet the requirement for this project, considering the fact that this is being
widely used by many system administrators in the industry to manage complex
environment. Also my familiarity and experience with Unix shell scripting could
help to shorten the overall time required to implement this system.

As I already had few new technical skills to be acquired for this project (Oracle
database, PHP and web server), I decided to choose Unix shell script as the tool for
this layer. Hence I used Unix Korn shell environment to develop the data collection
program, which is used to collect the all necessary data to store in the database.

3.2.2. Data store layer

Having decided that a database would be used for the data repository, the next
logical step was to choose the database from available choices. For this both MySQL
[18] and Oracle database were considered and I decided to use Oracle database.

There were primarily two reasons to choose Oracle database instead of MySQL.
They were,

1. I believed that Oracle’s SQL*Loader utility was much superior and much
more flexible tool (when compared to MySQL) to load the data into the
database tables from the Unix flat files. Because the data collected was
available as flat files before it could get inserted into the database, the ease
and power of this utility was an important consideration for me in choosing
the database.

2. Because my work environment has an Oracle environment, I thought
choosing Oracle as data store for this project, would help me to pick up an
additional new skill set. The experience and knowledge I would gain with
Oracle from this project could also be used in my work place. Since both
MySQL and Oracle were going to be a new journey to me, I found it would be
more advantageous to use Oracle than MySQL.

However, I also searched and verified that the web application language (in this
case PHP) was fully supported and had interface calls to communicate with Oracle
RDBMS.

3.2.3. Data retrieval layer

As was already mentioned HP-UX is supplied along with a web solution, which
contains both Apache web server [16] and the PHP programming language [5,9].
Hence it was naturally the first choice to use this combination unless otherwise it
would be totally unwise to do so.

Both Apache and PHP go hand in hand very nicely. The Apache web server
ability to parses PHP code embedded inside a HTML page, makes PHP language’s
popularity justified in the dynamic web applications area. PHP’s wide support of a
large number of backend databases including Oracle database made a comfort
feeling in choosing this combination.

So I have decided to use Apache web server and PHP as the tools for this layer.

 18

4. DETAILED DESIGN AND CODING

4.1. Design of each layer

4.1.1. Data collection layer design

The data collection layer design, was aimed to meet the following two main
goals.

1. There should be only one script (with multiple procedures inside for
each operating system) in the master server to collect the data from all
the hosts.

2. It should make it easy and less effort to add any new host for the data
collection.

The data collection layer has a single configuration file, which contains the
names of all the hosts from which the data is collected. The desired hosts are added
or removed as and when required and hence no hostnames are hard coded or pre-
configured in any of the scripts or programs. The main script (which initiates the
data collection from the master server) reads the configuration file and sends the
actual collection script to the respective hosts to collect the data. The same collection
script, which runs on respective host, sends back the collected data to the master
server. The collected data is stored in the master server as text files before it is loaded
into the Oracle database.

So essentially below three components constitute the data collection layer.

1. A data collection script (getsysinfo.sh), which actually runs on each
hosts, contains the underlying Unix commands to collect the data and
send it back to the master server.

2. A configuration file (sysinfo.conf), which has a strict format and
contains names of all the hosts, from which the data should be
collected.

3. A main script (sysinfomain.sh), which initiates the data collection
process reads the sysinfo.conf file and sends the getsysinfo.sh script to
respective hosts. Once the data is successfully collected, this main
script also executes necessary data loading scripts in the master server
to load the data into the database.

The getsysinfo.sh script has all the Unix shell procedures for three operating
systems. After checking the type of the operating system in which the script is run,
the respective procedure is selected to run on that particular host. A final procedure
in the same script sends all collected data from that particular host to the master
server. The collected files are sent back to the respective sub-directory for that host in
the master server.

The sysinfo.conf configuration file has three fields with a field delimiter
separated between them. The first field holds the hostname of the host from which
data should be collected. The second and third fields have the name and type of the
application. The content from this file is essentially used to build the index page

 19

dynamically by PHP, so that the user can choose the hostname of the server to view
the information.

The sysinfomain.sh script reads the sysinfo.conf file line by line and sends the
getsysinfo.sh script to each host. This sysinfomain.sh also creates one sub-directory (in
the master server) for each host in order to receive and store all collected data files
from that particular host. This main script sends the getsysinfo.sh script to host by
using the remote copy command (rcp) from the master server. After sending the
getsysinfo.sh to respective host, it is run by remote execution command (remsh) from
the master server.

Hence all target hosts are configured to allow the remote command execution
from the master server. This is one of the pre-requisite to collect the data successfully
by the master server. However, in order to avoid opening up of remote command
execution from the host systems to the master server, the collected data are sent back
to the master server by the getsysinfo.sh script using the file transfer protocol (ftp)
command.

Hence at this stage it was decided to start with the coding of getsysinfo.sh
script. But before starting this task, it was apparent that (from Software Development
Life Cycle method chosen as well as from the feasibility point of view) the Oracle
database table structure and the PHP application design must be completed and
understood fully before start developing the getsysinfo.sh script. So the detailed
design of both data store and data retrieval layers were completed before coding the
getsysinfo.sh script.

4.1.2. Data store layer design

The Oracle database design [4] basically governs both the data collection

script as well the web application (PHP) coding. At the end of this database design
phase, the Oracle database table structure was decided so that the coding of
getsysinfo.sh collection script could be started. The input data file format was also
decided at the end of this stage. This input data file is used by the SQL*Loader utility
to load the data from the flat file to the Oracle database.

The discussion with the users was helpful to derive the ‘Enterprise rules’ to
form the basis for database design. Based on these ‘Enterprise rules’, the entities,
attributes and their relationship were identified. Hence the database design was
begun by identifying the entities that must be represented in the Entity-Relationship
(ER) modeling. The ER diagram is presented in the Appendix A.4.

There were totally four entities identified. They were namely Host,
Hardware, Operating System and Detail Configuration. The attributes of each entity
were basically the data to be captured under the each category. But for the historical
data (to be used by the application program in future and for further enhancement to
the information system) one more additional attribute was identified for each entity.
It was noted that there would be a necessity for a date attribute to be associated with
each row in storing the historical data. This was due to the reason that there would
be duplicate records for the same hostname and only distinguished by the date in

 20

which the data was captured. Hence there were basically two choices considered in
finalising the entities and arrive the database schema.

The first choice, was to have the same entity (for example, Hardware) also to
hold the date attribute, so that the same database table would also hold both current
as well as history data. In this way it would be totally four entities and which would
be translated into four tables in the database. Since the primary objective of this
information system is to provide the current data, the application program logic
should take care of identifying the most recently updated record and extract that
particular row accordingly. So this would make PHP application program to build
additional comparison and filtering logic inside the current data extraction program.

On the other hand, the second choice was to have two different sets of tables,
one set would hold the current data and the other set would hold the history data. In
this case, it would make totally eight tables (four tables holding current data and four
more tables holding the history data) in the database schema. The Entity-
Relationship is same for both sets of tables with one additional attribute (date) in
each entity for the history information. It was also informed to me by some
experienced Oracle database administrators that, whenever possible it would always
be a better idea from performance point of view to separate history records and
current records into different tables. Also it was understood from the users
requirements that the frequency of reading the current data records would be much
more, than reading the history records. Also choosing this design would make the
application program to assume safely that the current tables has no duplicate records
for the given hostname and hence could avoid building any additional comparison
logic in order to display the most recently updated data to the user interface.

Hence it was decided to have totally eight tables in the database, four tables
for holding the current data and four more tables for holding the history data. The
names of the tables holding the current data are HOSTINFO, HWINFO, OSINFO and
DETAILCFGINFO. The corresponding history data tables are HOSTINFO_HIST,
HWINFO_HIST, OSINFO_HIST and DETAILCFGINFO_HIST. The data loading
program takes care of copying the current data to the history tables before updating
the current data tables. Even though there were four more additional tables designed
to just hold the history data, it could be seen that there is no data redundancy for the
same record within this two sets of tables. This is due to the reason that the each row
in the history data tables is inserted only before the current data tables are updated.

The foreign key hostname (referencing HOSTINFO table) in HWINFO,
OSINFO and DETAILCFGINFO tables ensured that the 1..1 relationship between
entities was satisfied. However this would only ensure the maximum one
participation but would not guarantee the minimum one participation. But this is
taken care during the data loading. When data is loaded from the Unix text files to
the database, it is ensured that each rows meant for that particular host is loaded into
all four tables. There is also a log file generated during the data loading which would
log if any rows were not loaded into the database.

The next important aspect of designing the table structure was, to choose the
right data type for each attribute. In addition to primitive data types to store
characters, numbers and date so on, Oracle also offers another important data type
called CLOB (Character Large Objects). The CLOB data type was chosen to hold the

 21

free format attributes (like /etc/hosts file, /etc/services file, Software list etc) inside
the database. However it was found out during the coding phase that the storing and
retrieving of the CLOB objects are much more complex than handling the primitive
data types.

Considerable amount of time was spent in finding out how to load this CLOB
type data into the database using the Oracle SQL*Loader utility and as well
retrieving using the PHP application program.

The next aspect as part of this layer is the SQL*Loader control file structure
and the input data file format. One input data file and one control file is created by
the data loading script for each table during the run time. One data loading script per
table is written and that in turn creates the control file and the input data file for that
particular table. So there are totally four data loading scripts to load data into four
current data tables. Each control file is created during the execution of the script with
SQL*Loader control commands. Before the SQL*Loader utility is called to load the
data, the input data file is created by combining all the host data into one single file
for that particular table. This approach is also made possible due to temporarily
storing the collected data files from each host under separate sub-directories in the
master server.

So totally four Unix scripts were written (loadhostinfo.sh, loadosinfo.sh,
loadnhwinfo.sh and loaddetailcfg.sh) to load the data into the four current data tables.
Each script creates its own SQL*Loader session and produce its own log file and bad
file to trouble shoot any data uploading problems. But before this four data loading
scripts are called, another SQL plus script (copytables.sh) is called to insert the data
into the history tables by selecting all rows from the respective current data tables.

As soon as the data collection process is completed successfully, all four
current data loading scripts are called from the sysinfomain.sh script. This approach
ensured that the minimum one participation of entity is guaranteed. By inspecting
the log files after the data loading, any errors or problems during the loading could
also be identified easily.

As mentioned earlier both the E-R diagram and table structure are presented
in the Appendix A.4 for reference

4.1.3. Data retrieval layer design

The first page or the home page of the web site is served by a single program,
which has both HTML and PHP code inside. The PHP code embedded in the same
file interacts with the Oracle database and extracts all the rows from HOSTINFO
table of the Oracle database. The extracted data is then passed to the web server to
serve to web browsers. The home page has a drop down list html form to choose one
of the available hosts listed in that web page. So essentially the index page
(index.php) of the web site has a dynamic content, which depends on the Oracle
database HOSTINFO table. Once the name of the host is selected the selection is
assigned to a variable and passed to the next PHP program (getinfo.php).

 22

The second page is the result of getinfo.php PHP program, which takes the
selection of the hostname from the first page and queries the HWINFO, OSINFO and
DETAILCFGINFO tables of the database. The result is used to construct one html
table for each database table. However the CLOB objects are not displayed in the
same page, instead a hyper link is provided to view that particular object.

Hence it was found out that in addition to one primary page to display all the
information for a particular selection in the first page, each CLOB object needed to be
displayed in each separate page so as to make the data presentation much more
elegant.

However, it was also understood that there could not be too many CLOB object
retrieval programs, but rather it should be only one common program to retrieve all
CLOB data type attributes in all tables. This would make this layer design much
more simple but posed a bit of challenge to the coding phase as HTML does not give
much choices in passing variables between pages. In the second page once a
particular HTML link is selected for the retrieval of CLOB attribute, then the
corresponding table name and the column name are passed as variables to another
PHP program. Hence only one CLOB object retrieval program is written to display
the contents of all CLOB data types from all three tables.

So this layer has totally three PHP programs (index.php, getinfo.php, getclob.php)
irrespective of any number of hosts configured in the sysinfo.conf file. The first
program (index.php) is to build the home or main page, the second program
(getinfo.php) is to display all attributes for that particular host (except the CLOB
objects) and the third program (getclob.php) is to display the selected CLOB object for
that particular host.

The user authentication was another aspect for this layer. This was
implemented by using the Apache web server’s default mod_auth authentication
module. The users were created using the Unix useradd command and password was
set using the Apache’s htpasswd command.

4.2. Coding of each layer

4.2.1. Data collection layer coding

Out of the three components (getsysinfo.sh, sysinfomain.sh, sysinfo.conf) for this
layer, the core of this layer is the getsysinfo.sh script. This script, which is written in
Korn shell, essentially comprises of AIX, HP-UX and Solaris operating systems
system administration commands. The script is written to satisfy two conditions. The
first, is to collect all parameters identified during the user requirement and the
second, is to match the output format to the input data file of SQL*Loader utility. The
script also ensures that the output format matches the data type defined in the
database.

The getsysinfo.sh script is written to capture data for three tables namely
HWINFO, OSINFO and DETAILCFGINFO. The data for the HOSTINFO table is
loaded using the sysinfo.conf file (as this file has all necessary data for the HOSTINFO
table). Presented below is the sample of the sysinfo.conf file.

 23

Before I completed the coding for all three operating systems, I decided to
complete the getsysinfo.sh script for one operating system flavour first. The script was
first developed on AIX operating system [15]. Totally five procedures for one type of
operating system were written. Out of five procedures two procedures are common
to all three operating systems. One of the common procedure set few shell variables
and execute non-operating system specific commands. The second common
procedure sends the collected data to the master server. The other three procedures
are unique to each flavour of operating system, which are meant to collect data for
OSINFO, HWINFO and DETAILINFO tables. Once the five procedures were
completed, it was tested in that particular AIX host to confirm that it had collected all
necessary data according to the specification and the output format conform to the
input data file requirement.

Once getsysinfo.sh shell script was fully tested and confirmed its desired
functionality, the same script was re-used next in a HP-UX server. The two common
procedures were re-used without any changes, but the three other Operating System
specific procedures were modified for HP-UX commands [13] in place of AIX
commands to capture the same information. But the large portion of the code was
totally untouched. This approach has made me to save lot of time, as I had only spent
far less time in getting the script to work on HP-UX than on AIX. This approach also
ensured that I was able to get the desired output format for the HP-UX at the first
time itself as the code was fully tested in AIX before.

The same approach, which was taken for HP-UX had been followed for
Solaris operating system as well. Again as expected, it only took much less time in
getting the script to work and test fully in Solaris than on AIX operating system.

Following are two examples of changes made in coding to suit the individual
operating system specific commands.

To identify whether the Unix kernel is running in 32 bit or 64 bit mode, in
AIX bootinfo –K command is used. The same line of code is changed as getconf
KERNEL_BITS for HP-UX and for Solaris [14] isainfo –v command is used.

Similarly the installed software list is obtained by using the lslpp command in
AIX, in HP-UX it is obtained by using the swlist command and in Solaris it is
required to use pkginfo command.

Once all the data collection procedures were tested fully, they were combined
into one single script to get the final getsysinfo.sh script. The type of the operating
system is checked first before branching to select the respective procedures for that
operating system.

The script was made to ensure that following coding standards were followed.

uxd07+Oracle+Test
uxp18+Finance+Production
uxd02+Billing+Development
uxd18+SAP+Development
uxd15+Engineering+Development

Sample sysinfo.conf file

 24

1. Any hard coding of name of log files, directories or any other values
inside the program should be avoided and instead variables should be
used and defined at the beginning of the script.

2. All variables must be in upper case and alpha numeric. But the variables
to hold the values of the database columns must be distinguished by
beginning with upper case and followed by lower case letters or numeric.

3. Name of the variables should be appropriate to describe its purpose.

The sysinfomain.sh script begins by reading the sysinfo.conf file and copy the
getsysinfo.sh to the first host specified in the configuration file. Once copied the next
line of code, runs the getsysinfo.sh script on that particular host using the remsh
command. Once this script is successfully completed in running on that particular
host, all necessary data files are available in the master server under the specified
directory for that host. This process is repeated for all the hosts using a single
for…do…done loop. Once data collection is completed for all the hosts, then the same
sysinfomain.sh scripts executes the data copying script (copytables.sh) which insert all
rows from the current tables to the history data tables. Once this is completed, the
sysinfomain.sh script executes the each data loading script for HOSTINFO, OSINFO,
HWINFO and DETAILCFGINFO tables.

So at the end of the successful completion of sysinfomain.sh script, the data from
all the hosts are collected, sent to the master server and loaded into the Oracle
database.

Hence as mentioned earlier, this is the only script, which initiates the data
collection and loading. This script was scheduled in the master server’s cron
scheduler to run initially once in day. After observing for about five cycles of
successful run, the frequency of the run was later reduced to once in week.

The selected portion of code for sysinfomain.sh and getsysinfo.sh and are presented
in Appendix A.5

4.2.2. Data store layer coding

First the Oracle database and the database schema [6] was created as per the table
structure designed. There were totally four scripts (loadhostinfo.sh, loadosinfo.sh,
loadnhwinfo.sh and loaddetailcfg.sh) developed to load the data from text files to the
current data tables. Each script does two main tasks. The first task is to create the
SQL*Loader control file [2]. This control file controls the behaviour of the Oracle data
loader command (sqlldr). The second task is to create the input data file from the
output produced by the respective hosts. This input data file is used by the
SQL*Loader control file for the INFILE parameter.

Two different programming logics are used to construct the input data file for the
four current data tables. The first logic is used to load data for HOSTINFO table and
second logic is used to load data for all other three tables (HWINFO, OSINFO and
DETAILCFGINFO).

 25

In the first logic the data for the HOSTINFO table is derived from the sysinfo.conf
file. The Unix script, loadhostinfo.sh reads the sysinfo.conf file and creates a new input
data file to match all columns of HOSTINFO table. Once the file is created the next
task of creating the SQL*Loader control file is done by passing all control commands
to a separate file. Then the script calls the SQL*Loader command (sqlldr) and pass the
name of the control file as the argument. In turn the control file reads the input data
file and all rows are loaded from the input data file.

But where as a different logic is used in building the input data file for all other
three tables. This is because the data collected from any particular host are stored in
separate directories. These directories are traversed in order to build the input data
file for each table. So all three other data loading scripts (loadosinfo.sh, loadhwinfo.sh,
loaddetailcfg.sh) have the same for…do…done loop commands to build the input data
file. The final input data file has one line for each host. A delimiter character
separates the value of each column in the database. Once the input data file is
constructed, the script creates the SQL*Loader control file for that particular table. As
mentioned, passing all control commands to another separate temporary file does
this part. The control file is passed as an argument for the sqlldr command and that in
turn use the input data file to source the data.

But before these four data loading scripts are called to load the data, another
script copytables.sh is executed to copy the data from current tables to the history
tables. This simple script which calls the sqlplus command and pass the insert
statement to insert the corresponding row in all four history tables by reading the
respective current data tables.

The selected portion of code for loadhostinfo.sh and loadosinfo.sh are presented in
Appendix A.5

4.2.3. Data retrieval layer

Once Apache web server [1] authenticates a user, the index.php program
serves the first page to the web browser. Since the same program does both the
presentation as well database connectivity tasks, it has both PHP code [10] as well as
the HTML code [17] inside. The first or index page of the web site is basically the
content extracted from the HOSTINFO table. The Oracle database connectivity is
established by using the PHP Oracle 8 functions [11,12], which basically use the
Oracle 8 Call-Interface (OCI8). The OCIExecute function of PHP executes the required
SQL statement against the connected database and OCIFetchInto function call gets the
results into an array variable (host). Once the HOSINFO table column values are
fetched, using the HTML Form with select and option tags, a drop down list menu is
generated. The selected value for the hostname variable is sent to the getinfo.php
program. The HTML form uses the POST method to pass the hostname value to the
getinfo.php program. The getinfo.php program uses the value of the hostname to
extract all the information for that particular host.

The getinfo.php uses the same above-mentioned two OCI8 function calls
(OCIExecute, OCIFetchInto) to query and store the results from HWINFO, OSINFO
and DETAILCFGINFO tables. The extracted data from the database is presented in

 26

three HTML tables, which correspond to Hardware, Operating System and Detailed
configuration information. This single program, which essentially displays all
information about the selected host, is grouped into three different stages.

The first stage queries and fetches the data from the HWINFO table. A PHP
array variable (hwinfo) is used to hold the result of the query obtained by the
OCIFetchInto function call. The content of this variable is used to build and present
the Hardware Information HTML table.

The second stage queries and fetches the data from the OSIFNO table. A PHP
variable (osinfo) is used to hold the result of the query obtained again by the
OCIFetchInto function call. The Operating System information is presented by using
the content of this variable.

The third and final stage queries and fetches the data from the
DETAILCFGINFO table. A PHP variable (detailinfo) is used to hold the result of the
query. The Detailed Configuration Information HTML table is presented by using
the content of this variable.

In all three HTML tables, the CLOB data type column has a hyper link
provided against its corresponding heading. This hyper link calls another program
getclob.php by passing values for three variables (hostname, table name and column
name) as part of the Uniform Resource Locator (URL). Every hyper link passes
different values for hostname, the database table name and the corresponding
database column name for that particular heading. So the same getclob.php is used
with different input values according to the table and column name selected.

So in summary, totally these three (index.php, getinfo.php, getclob.php) PHP
programs (or rather it may be called as, HTML script with PHP code embedded) do
the data extraction from the database and presentation to the users web browser for
viewing the current data about the particular host, which is selected in the first page.

As part of the coding standard, all the PHP variables are used as lower case
and the database columns are distinguished with upper case characters. Comments
are inserted whenever necessary.

A sample portion of the code is presented in the Appendix A.5 for the
index.php, getinfo.php and getclob.php programs.

 27

5. TESTING

5.1. Testing approach

As decided while choosing the process model, the testing of each layer was done
before starting the coding of next layer.

The other approach was to finish the coding of all three layers and start testing
each program and scripts. But I believed that this approach could make the trouble
shooting more difficult and any change of code in one of the layer would have a
bigger impact on another layer programs. So hence I have decided that each layer
must be tested first to confirm the proper functioning before proceeding to the next
layer.

Each layer of coding was tested with the objective of making sure that it could
deliver the required output to the next layer. Testing criteria were worked out for
each layer and it was necessary that the each program to pass the criteria successfully
without any errors.

All Unix shell scripts which were written for data collection and data store layers,
were first run under shell debugging and verbose mode. This was to visually see
and ensure that all statement in the code was executed at least one time without any
errors. This approach was to do a ‘white box’ testing in addition to test for the
desired data output produced by each script.

Once the individual layer testing was completed a complete integrated testing
was done. In this test it was ensured that the overall system could function without
any errors while meeting the test criteria. This integrated test was also to confirm that
the system would be ready for a validation test or user acceptance test.

5.2. Testing and test results

5.2.1. Data collection layer

Testing objective of this layer was to confirm that the data were collected
from the Unix servers and sent to the master server as per the format designed.
Following table shows test conditions and results of testing for this layer.

Sl.

No

Test Expected result Achieved result Remarks

1 Run the getsysinfo.sh
script in AIX, HP-UX
and Solaris servers and
verify it can produce
proper output and
conform to input file

Respective shell
procedures should
be selected for each
OS and all
necessary data are
collected.

PASS

Each server’s
output
produced the
desired format
and all

 28

format of Oracle
SQL*Loader utility.

necessary data
were collected
without any
omission.

2

Run sysinfomain.sh script
in master server.

getsysinfo.sh script
should be sent to
all three servers
specified in the
configuration file
and should run the
script from master
server.

PARTIALLY
SUCCESSFUL

Could not send
the getsysinfo.sh
script to AIX
server and
collect output

It was found
out that the AIX
server did not
allow the
remote
execution.
Problem
corrected after
making right
setup in the
AIX server

3 Send the collected data
to the master server to
the respective directories

All three servers
data should be
available in the
master server
under the
respective
directories

PASS

All collected
data for three
servers were
available under
the respective
directories as
per the data
loading input
file
requirement.

Successful
result of this
test confirmed
proper
collection of
data

5.2.2. Data store layer

The objective of testing this layer was to confirm that the collected data could
be successfully loaded into the Oracle database.

Sl.
no

Test Expected result Achieved result Remarks

1 Read sysinfo.conf file and
load into HOSTINFO
table

All three samples
records were to be
loaded into
database. No
discard records or
bad records should
be reported.

PASS

sqlldr utility
successfully
loaded all three
records and
checked with
sqlplus utility

 29

2

Read collected hardware
related data and load
into HWINFO table

All three sample
records to be
loaded into
database. No bad
or discard records

PASS

sqlldr utility
successfully
loaded all three
records and
checked with
sqlplus utility

3 Read collected OS
related data and load
into OSINFO table

All three sample
records to be
loaded into
database. No bad
or discard records

PARTIALLY
SUCCESSFUL

sqlldr utility
successfully
loaded all three
records and
checked with
sqlplus utility

The data type
defined in the
database for
one of the
column did not
match with the
input data
(column name
LASTBOOT.)
The data type
was changed
from DATE to
VARCHAR2
and tested ok.

4

Read collected data and
load into
DETAILCFGINFO table

All three records to
be loaded into
database. No bad
or discard records

PASS

sqlldr utility
successfully
loaded all three
records and
checked with
sqlplus utility

5.2.3. Data retrieval layer

The objective of testing this layer was to confirm that the data stored in
Oracle database could be successfully retrieved by the web application. This would
also ensure that the Apache web server was configured properly.

 30

Sl.
No

Test Expected result Achieved result Remarks

1 Apache web server
user authentication

Web site to prompt
user name and
password

PASS

Prompted the
user name and
accepted the set
password

2 List the available
servers in the database
and accept the user
input.

Index page to show
three servers
details with a drop
down menu to
choose the server
name to query

PASS

3 Query the database
with selected server
name

Once the selected
server name has
been submitted, the
next page should
display the
hardware, software
and detailed
information.

PASS

In a single page
all required data
were shown.

4 Check all the links
provided for the
detailed information.

The information
displayed with
respect to each
items must
correspond to the
heading shown.

PARTIALLY
SUCCESSFUL

It was noticed
that one of the
CLOB data
type was not
retrieved and.
This was due
to a typo error
in PHP
program and
it was
corrected

5.3. Validation

The validation test was performed to confirm that the system meet the users
requirements. Once the final testing was over, the list of criteria for the validation test
were finalised with users. The criteria were basically the sub-set of stated
requirements at the beginning of the project

There were two users involved in validating the system against the initial
requirement stated at the beginning of the project. The system was used and tested
by them for about two to three days before a formal acceptance was carried out.
After the three days of testing and verification by them separately, I have re-run and
verified the below tests together with them to confirm the requirements are met.

 31

During the test I also sought suggestions and feedback for improvement and their
comments about the system.

Following table gives the user acceptance test criteria with results and feedback
from users.

Sl.
no

Test Expected result Achieved
result

Remarks/
User

feedback

1 User authentication

a) Enter valid user
name

b) Enter in-valid user
name

Should show the index
page, if correct user
name and password are
entered. If not deny the
access.

PASS It was
mentioned
that it would
be nice if user
would be able
to change the
login
password.

2 Add five servers in
sysinfo.conf file and Index
page should list all
servers.

Should show one server
in each row with all
columns filled up.

PASS

3 Proper values were
displayed in the pull-
down menu for servers
list

All five servers should be
shown in the pull-down
menu

PASS

4 Select any one server and
view all information

To display hardware, OS
and detailed
configuration
information in one page

PASS

5 Check every item and
verify it was the correct
data for that item
(example: number CPUs
were correct, IP address
was correct)

Should show the
corresponding data for
each item

PASS As per the
user feedback,
the Last boot
column data
type was
changed to
accommodate
number days
since last
boot.

6 Check each and every
hyper links displayed
and verify the details
displayed were correct

Each hyper link should
show corresponding
CLOB data type value.

PASS

 32

7 Repeat step 4-6 for all
five servers

Obtain the same results
as in step 4-6

PASS

8 Add one more server in
sysinfo.conf file and check
the data was collected for
that server.

Data for the newly
added server should be
collected, stored and
display in the web page

PASS

9 Remove three servers
from the configuration
file and check ensure
those servers data were
removed from database

After re-running the
collection script, the web
site index page should
not show the removed
three servers

PASS

10 Change one of the
servers ‘/etc/hosts’ file
and check the change
was seen in the web
browser

After the change and
data collection, the
‘/etc/hosts’ file link
should show new
content.

PASS

 33

6. CRITICAL EVALUATION AND CONCLUSIONS

6.1. Project management

While I was able to complete the project close to originally planned time, but I
must state that the coding and testing phase over ran by almost 25% than the
originally planned 150 hours. This was purely due to my under estimation of time
needed to learn both Oracle (including its utilities) as well as PHP. These two were
totally new skill sets acquired by me during this project. However this overrun was
compensated by earlier than expected time of completion of the ‘Solution Decision’
phase. I had realised that any new skill sets to be acquired or unfamiliar technologies
introduced in a project could greatly affect the over all project schedule. Hence, if I
have to re-draw this or draw another project schedule I would definitely take this as
an important aspect for the overall project planning.

The software development life cycle model I have chosen had helped me to
implement this project in a systematic way, but at end of the project I had realised
that I could have chosen a different process model which might be slightly more
appropriate for this project. The Waterfall model I had used did not explicitly
provide a feedback loop8 from one phase to other phase. During the coding and
testing phase, I have faced few problems with respect to the database column lengths
and data type selected. While I have fixed those problems but strictly speaking, this
could be possible only with the provisioning of feedback loop from one phase to
another phase. In this case, a change in the database design as the result of integrated
testing had no provision according to the linear model. Also as per my approach of
individual unit testing followed by the integrated testing deemed to fit very closely
in the V model than the Linear model. Hence for both these reasons, I think I should
have chosen the V model rather the linear model.

6.2. Design and choice of tools

I had realised that the idea of using remote shell (remsh) from the master server to
send and run the data collection script had created a major weakness in terms of
security to the systems. While I still believe it is a good idea to have the data
collection script in the master server (as I did so), but I think I should have at least
used secure shell (ssh) environment to implement the data collection process. But it
could also be said that if any host wants to participate in this information system,
then it should trust the master server. Hence in my view the idea of choosing the
remsh was not necessarily a wrong idea but if I have to do it again, I would probably
do it with secure shell environment.

As regard to the data store layer, I still believe that the Oracle database as the
data repository had worked well for me and at no time during this project I regretted

8 “Although the original waterfall model proposed by Winston Royce made provision for feedback
loops, but in practice this process model treats it as if it were strictly linear”. (Roger S. Pressman (2001)
SEPA, 5/e. McGraw-Hill International edition.)

 34

in choosing Oracle database. However, I had observed during the course of this
project work that the resource and knowledge available for PHP-MySql combination
to be very rich and plenty, when compared to PHP-Oracle combination. But Oracle’s
SQL*Loader utility’s flexibility and power was one of the strong point which had
helped me to make the data loading into the database much more ease and robust.
On this aspect I still doubt whether I could have the same functionality with MySql.
However I must acknowledge that I had not done very detailed study at the
beginning of the project to make a right and fair conclusion on data loading options
and utilities between these two database systems. Hence if I have to do it again, I
would first give a deeper look at MySql data loading options and LOB data type
support, and if it is found equal to Oracle and then would probably choose MySql
instead of Oracle.

As far as the data retrieval layer is concerned, I totally believe the Apache and
PHP was a right combination and I do not think I would want to choose any other
combination or programming language. But there was one major weakness in user
authentication implementation. While I was aware of the sensitivity of nature of the
data carried by the web site and I have implemented the default Apache’s user
authentication mechanism, but this proved to be practically far from perfect. This
authentication mechanism required the web administrator to create the login account
and set the password. I have not catered or designed to provide some mechanism to
allow users to change their passwords. While the creation of account could be still
done by the administrator, the users wanted that the account password is set or
changed by them. In that case, PHP and database based authentication with the
options of password changing feature would be a better choice than the basic HTTP
authentication.

6.3. Testing and validation

I believe the testing approach I had taken, has worked well for me. This was
evident from the fact that I was able to fix most of the problems during my unit
testing and hence the integrated testing was by and large went without major
problems. This approach also helped to pass the validation test the users without
much issues.

Even though I was able to deliver the system as per initial agreed requirement
and met the user expectation on the out come of the system, but this system has
failed to meet the users expectation on the user authentication mechanism (as
discussed in chapter 6.2). This could have been clearly avoided if I had discussed in
detail about this requirement initially and taken care during the design. The part of
the problem also due to my assumption that the basic authentication would be
enough to restrict the access to the data stored in the master server. I have realized
that any assumptions in user requirement should be avoided or otherwise to be
clarified, to avoid this kind of situations.

 35

6.4. Overall conclusions

Overall this project achieved its primary aim of providing the Unix servers
information over the web, which was found very useful to the intended users of this
information system.

But this system could have been improved at least in following few ways and
provide more functionalities than just providing the current system configuration.
First, a search function to look for specific pattern for few columns like type of
operating system, version of operating system and vendor name to filter based on
user’s criteria to view the systems. Second, provide some means to query the
historical data in addition to the current data. Third as a way of tracking changes
happened in the system configuration over the period of time.

However, considering the given reasonable time for this project and having
met the users requirement and expectations, this system can be considered successful
and serves its purpose.

 36

Bibliography

1. Mohammed J. Kabir (2002) Apache Server 2 Bible. Hungry Minds, Inc. USA.

2. Oracle 8i Server and SQL*Plus, Documentation CD-ROM. Oracle Corporation.

3. Roger S. Pressman, Software Engineering (SEPA, 5/e), McGraw-Hill
International edition.

4. Thomas Connolly & Carolyn Begg (2000) Database Solutions. Addison-Wesley

5. Ramus Lerdorf & Kevin Tatroe (2002) Programming PHP. O’Reilly &
Associates

6. Michael Wessler (2001) Oracle DBA on Unix and Linux. SAMS

7. Centre for Technology in government, A Survey of System Development
Process Models,
http://www.ctg.albany.edu/publications/reports/survey_of_sysdev

8. The Standish group, http://www.standishgroup.com

9. Word Wide Web: PHP: Hypertext Preprocessor, http://www.php.net/

10. World Wide Web: PHP Help:PHP Freaks.com http://www.phpfreaks.com/

11. World Wide Web: PHP Conference Material Site, http://conf.php.net/

12. World Wide Web: Webmonkey Programming PHP & Using Oracle with PHP,
http://hotwired.lycos.com/webmonkey/programming/php/

13. World Wide Web: HP Technical documentation, http://docs.hp.com/

14. World Wide Web: Sun Product Documentation, http://docs.sun.com/

15. World Wide Web: IBM AIX operating system: Library, http://www-
1.ibm.com/servers/aix/library/index.html

16. World Wide Web: Apache HTTP Server Project, http://httpd.apache.org/

17. World Wide Web: HTML Tutorial, http://www.2kweb.net/html-tutorial/

18. World Wide Web: MySQL, http://www.mysql.com/

Appendix
 A.1 Project plan

A.2 User requirements – Details of data captured from servers

 Following are the details of each data items captured under each category.
Each category listed here corresponds to one database table in the Oracle database.

• Host information

1. Hostname
2. Application name
3. Application type

• Operating system information
1. uname
2. OS name
3. Version
4. OS mode (32 or 64 bit)
5. Installed patches list (file)
6. Last boot
7. Installed Software list (file)

• Hardware information

1. Vendor
2. Model
3. Serial number
4. 64bit capable
5. CPU type
6. Total number of CPU
7. Physical memory
8. Total disk space
9. Tape drives (file)
10. IO adapters (file)
11. Hardware scan output (file)
12. External storage Connection

• Detail Configuration information

1. IP address
2. Networking details (file)
3. Bootlist info (file)
4. Filesystem details (file)
5. LVM details (file)
6. Fstab(file)
7. Hosts(file)
8. Services(file)
9. Inetd.conf(file)
10. Passwd(file)
11. Group(file)

 39

A.3 System hardware and software packages used for this project

One HP-UX master server was used for this project with following hardware and
software packages. The operating system was re-installed and additional software
packages were installed using the vendor supplied software distribution media.

• Hewlett-Packard PA-RISC based K-class HP-UX server

• HP-UX version 11.00

• Korn Shell environment

• HP Apache based web server with PHP – Product part number B9416AA

• Oracle server – version 8.1.7

There were totally three types of client Unix servers (one for each operating
system) were used to collect the data and test the information system. Following are
the operating system detail of each host, which were used to test and implement this
information system.

• IBM AIX version 5.2

• Hewlett-Packard HP-UX 11.00

• SUN Solaris 8 (SunOS 2.8)

A.4 Database design

Entity Relationship diagram

Below diagram shows entity relationship modeling used to arrive the database
schema.

Each computer system called host, runs on only one hardware and under only one
operating system. The host has detailed configuration information in order to support
the application environment. The host, hardware, operating system and detailed
configuration have various items or properties as mentioned in the below diagram.
The properties under each entity correspond to the each data item for that category
(this is as per the users requirement, which is presented in Appendix A.1)

OS
Uname#
OS name

OS version
OS bit mode

Patch list
Last boot

Installed SW

Host
Hostname#
Application

name

Hardware
Serial number#
Vendor
Model
64bit capable
CPU type
Number of

1..1 1..1
 40

Application
type

Last updated

Detail config
IP address#
Network_detail
Bootlist_info
Fs_detail
LVM detail
Fstab
Hosts file
Services file
Inetdconf file
Password file
Group file

Runs
under

has

1..1 1..1

CPUs
Physical
memory
Total disk space
Tape drives
IO adapters
Hardware scan

Runs
on
1..1

1..1

Ext. storage-

 41

Database design (continued…)

Oracle Database tables structure

a) Current data tables

Table name : HOSTINFO (Represents Host entity)

Column name Data type Remarks
HOSTNAME# VARCHAR2(8) PK
APPLNAME VARCHAR2(15)
APPLTYPE VARCHAR2(15)
UPDATED DATE

Table name : HWINFO (Represents Hardware entity)

Column name Data type Remarks
SERIALNUMBER# VARCHAR2(15) PK
HOSTNAME#* VARCHAR2(8) FK (Not null and no

duplicate)
References hostinfo

VENDOR VARCHAR2(8)
MODEL VARCHAR2(10)
CAPABLE64BIT VARCHAR2(3)
CPUTYPE VARCHAR2(8)
NUMBEROFCPU NUMBER(2)
TOTALMEMORYMB NUMBER(6)
TOTALDISKSPACEGB NUMBER(4)
TAPEDRIVES CLOB
IOADAPTERS CLOB
HARDWARESCANOUTPUT CLOB
EXTSTORAGECONN VARCHAR2(8)

Table name : OSINFO (Represents OS entity)

Column name Data type Remarks
UNAME# VARCHAR(8) PK
HOSTNAME#* VARCHAR(8) FK (Not null and no

duplicate)
References hostinfo

OSNAME VARCHAR2(8)
OSVERSION VARCHAR2(8)
OSBITMODE CHAR(2)
PATCHLIST CLOB
LASTBOOT VARCHAR2(15)
INSTALLEDSOFTWARELIST CLOB

 42

Table name : DETAILCFGINFO (Represents Detailed Configuration entity)

Column name Data type Remarks
IPADDRESS# VARCHAR(15) PK
HOSTNAME#* VARCHAR(8) FK(Not null and no duplicate)

References hostinfo
NETWORKDETAIL CLOB
BOOTLISTINFO CLOB
FSDETAIL CLOB
LVMDETAIL CLOB
FSTABFILE CLOB
HOSTSFILE CLOB
SERVICESFILE CLOB
INETDCONFFILE CLOB
PASSWDFILE CLOB
GROUPFILE CLOB

b) History Data tables

Table name : HOSTINFO_HIST (Corresponds to HOSTINFO table)

Column name Data type Remarks
HOSTNAME# VARCHAR2(8) Composite key
DATED# DATE Composite key
APPLNAME VARCHAR2(15)
APPLTYPE VARCHAR2(15)

Table name : HWINFO_HIST (Corresponds to HWINFO table)

Column name Data type Remarks
SERIALNUMBER# VARCHAR2(15) Composite key
DATED# DATE Composite key
HOSTNAME#* VARCHAR2(8) FK (Not null and no duplicate)

References hostinfo_hist
VENDOR VARCHAR2(8)
MODEL VARCHAR2(10)
CAPABLE64BIT VARCHAR2(3)
CPUTYPE VARCHAR2(8)
NUMBEROFCPU NUMBER(2)
TOTALMEMORYMB NUMBER(6)
TOTALDISKSPACEGB NUMBER(4)
TAPEDRIVES CLOB
IOADAPTERS CLOB
HARDWARESCANOUTPUT CLOB
EXTSTORAGECONN VARCHAR2(8)

 43

Table name : OSINFO_HIST (corresponds to OSINFO table)

Column name Data type Remarks
UNAME# VARCHAR(8) Composite key
DATED# DATE Composite key
HOSTNAME#* VARCHAR(8) FK (Not null and no duplicate)

References hostinfo_hist
OSNAME VARCHAR2(8)
OSVERSION VARCHAR2(8)
OSBITMODE CHAR(2)
PATCHLIST CLOB
LASTBOOT VARCHAR2(15)
INSTALLEDSOFTWARELIST CLOB

Table name : DETAILCFGINFO_HIST (Corresponds to DETAILCFGINFO
table)

Column name Data type Remarks
IPADDRESS# VARCHAR(15) Composite key
DATED# DATE Composite key
HOSTNAME#* VARCHAR(8) FK (Not null and no duplicate)

References hostinfo_hist
NETWORKDETAIL CLOB
BOOTLISTINFO CLOB
FSDETAIL CLOB
LVMDETAIL CLOB
FSTABFILE CLOB
HOSTSFILE CLOB
SERVICESFILE CLOB
INETDCONFFILE CLOB
PASSWDFILE CLOB
GROUPFILE CLOB

 44

A.5 Listing of selected portion of code from various programs

################## Begin data collection from all hosts
for HOST in `cat $CONFFILE|awk -F+ '{print $1}'`
 do
 rm -r $DATADIR/$HOST
 mkdir -p $DATADIR/$HOST
 chmod 777 $DATADIR/$HOST
 remsh $HOST "mkdir -p $REMOTEDIR"
 rcp $LOCALDIR/$COLLECTCMD $HOST:$REMOTEDIR/$COLLECTCMD
 remsh $HOST "chmod 700 $REMOTEDIR/$COLLECTCMD"
 remsh $HOST "$REMOTEDIR/$COLLECTCMD"
 done

############### End of data collection

sysinfomain.sh : Data collection Layer – Main script

getsysinfo.sh : Data collection layer – Actual data collection script

AIX5hwinfo()
{
Hostname=`hostname`
Vendor=`uname -M|awk 'BEGIN {FS=","} {print $1}'`
Model=`uname -M|awk 'BEGIN {FS=","} {print $2}'`
Serial=`uname -u|awk 'BEGIN {FS=","} {print $2}'`
CPUTYPE=`getsystype -y`

if [$CPUTYPE = 64];
 then
 Cputype64=Yes
 else
 Cputype64=No
fi
…
…
DSPACE=0
for i in `lsvg -o|grep -v rootvg`
 do
 ((DSPACE=DSPACE + `lsvg $i|grep "TOTAL PPs"|awk '{print $7}'|cut -d "("-f 2`))
 done

…
…

TotalDiskspace=`expr $DSPACE / 1024`
print "$Hostname|$Vendor|$Model|$Serial|$Cputype64|$Proctype|$TotalCPU|$Physical
memory|$TotalDiskspace|$Tapedrives|$IOAdapters|$HardwareScanoutput|$ExtStorageCo
nn" > $OUTPUTDIR/hwinfo.out
}

 45

…
…
cat $INPUTFILE |while read LINE
 do
 echo $LINE+`date "+%d %b %y"` >>$OUTFILE
 done

Constract the control file now

echo "
load data
infile '$OUTFILE'
badfile '$SQLBAD'
replace
into table Hostinfo
FIELDS TERMINATED BY \"+\"
(HOSTNAME,APPLNAME,APPLTYPE,UPDATED) " >$SQLFILE

Now call the sql loader

su - oracle -c "sqlldr userid=$USER/$PASS control=$SQLFILE log=$SQLLOG" >/dev/null

End of script

loadhostinfo.sh - Data loading script for uploading the data into HOSTINFO table

…
…
Contruct the infile for the sql loader

>$OUTFILE
>$SQLLOG
>$SQLBAD

for HOST in `cat $CONFFILE|awk -F+ '{print $1}'`
 do
 cat $DATADIR/$HOST/$INDATFILE >>$OUTFILE
 done

Construct the control file now

echo "
load data
infile '$OUTFILE'
badfile '$SQLBAD'
replace
INTO TABLE OSINFO
FIELDS TERMINATED BY \"|\"
TRAILING NULLCOLS
(
HOSTNAME,UNAME,OSNAME,OSVERSION,OSBITMODE,
EXT_FILE1 FILLER CHAR(100),

loadosinfo.sh - Data loading script for uploading the data into OSINFO table

 46

…
…
<?
require('./dbinfo.inc');
$connection = OCILogon(USER,PASS,DB);
$query="select * from hostinfo order by hostname";
$stmt = OCIParse($connection, $query);
OCIExecute($stmt);
?>
…
…
<form ACTION = "getinfo.php" method=POST >

<select name="hostname">

<?

while(OCIFetchInto($stmt, &$host, OCI_ASSOC))

 {

?>

<option value=<?= $host['HOSTNAME'] ?> > <?= $host['HOSTNAME'] ?> </option>
<? }

?>

</select>

<input TYPE="Submit" Value="Submit">

</form>

index.php – Data retrieval layer – Index page

PATCHLIST lobfile(EXT_FILE1) terminated by EOF,
LASTBOOT,
EXT_FILE2 FILLER CHAR(100),
INSTALLEDSOFTWARELIST lobfile(EXT_FILE2) terminated by EOF
) " >$SQLFILE

Now call the sql loader

su - oracle -c "sqlldr userid=$USER/$PASS control=$SQLFILE log=$SQLLOG" >/dev/null

End of script

 47

getinfo.php – Data retrieval layer – Retrieve data from Oracle database tables

<? echo $hostname;

/// Query and Display the HW info

require('./dbinfo.inc');
$connection = OCILogon(USER,PASS,DB);
$query="select * from hwinfo where hostname='$hostname'";
$stmt = OCIParse($connection, $query);
OCIExecute($stmt);
OCIFetchInto($stmt, &$hwinfo, OCI_ASSOC)
?>

<p align=center>Hardware Information

<table border="4" width=600 align=center cellspacing="0">
<tr>
<td width=65%>Vendor</td>
<td width=35%><?= $hwinfo['VENDOR'] ?></td></tr>
<tr>
<td >Model</td>
<td><?= $hwinfo['MODEL'] ?></td></tr>
<tr>
…
…
 <tr>
<td >Hardware Scan output</td>
<td><a href="getclob.php?host=<? echo $hostname

?>&tab=hwinfo&col=HARDWARESCANOUTPUT">Click here</td></tr>
…
…

<html>
<body>
<title>Unix Servers Information</title>
<body background="images/pink_fabric.gif">
<p align=center>Hostname:
<? echo $host ; ?>
</p>
<?
require('./dbinfo.inc');
$connection = OCILogon(USER,PASS,DB);
$query = "select $col from $tab where hostname='$host'";
$stmt = OCIParse($connection, $query);
OCIExecute($stmt);
OCIFetchInto($stmt, &$clobinfo, OCI_ASSOC);
$CLOBDATA=($clobinfo["$col"]->load());
?>

<PRE><? echo $CLOBDATA ?></PRE>
</body>
</html>

getclob.php – Data collection layer: Retrieve the CLOB data type

 48

A.6 Selected screen shots of web browser
(Note: Fictitious company name and URL is used to maintain the

confidentiality of the organization. Also the server serial number and IP address have
been masked to maintain the confidentiality)

 49

Not disclosed
due to
confidentiality
reason

Not disclosed
due to
confidentiality
reason

 50

