

Concurrency and
Visualisation

Michael Askanis

A dissertation Submitted in partial fulfillment of the
requirements for the degree of a Master of Science in

Computer Science in the University of Wales,
Aberystwyth

Supervisor: Dr. E M Sherratt

University of Wales, Aberystwyth
February 2004

DECLARATIONS

The content of this dissertation is the result of my own independent work and investigation
except where otherwise stated. All sources are acknowledged by explicit references to the
bibliography.

Signed: . (Michael Askanis)

Date

I declare that this work has not previously been accepted in substance for any degree and is
not being concurrently submitted in candidature for any degree.

Signed: . (Michael Askanis)

Date

I hereby give my consent to the dissertation, if successful, to be available for photocopying
and for inter-library loan, and for the title and summary to be made available to outside
organisations.

Signed: . (Michael Askanis)

Date

ACKNOWLEDGEMENTS

I am grateful to my supervisor Dr. E M Sherratt for her help and encouragement during the
entire working time. I would also like to thank my parents for both financial and most
important moral support without which I could never have completed this project.

ABSTRACT

The project investigates the subject of concurrency.

Concurrency is the illusion that the CPU is executing multiple programs or processes, but in
effect is switching from one program to another so quickly that it gives the appearance that
programs are running at the same time.

The study describes the 2D visualization of concurrency and the problems associated with it,
using the (i) Producer/Consumer and (ii) Dining Philosophers. Visualization is very useful to
students or others who wish to gain an understanding of concurrency. Two languages (Java
and C/C++) were considered; the former for its graphics and the latter for its low level
standard POSIX system calls. Java was chosen for its platform-independence and ability to
produce web applets.

The software was successfully created with a few alterations to the original requirements.
However, problems were encountered with certain Java platform dependencies.

CONTENTS

Chapter 1– Introduction ...1

1.1 Aim of Project..1
1.2 Running Environment..1
1.3 Programming Language...1
1.4 Technique...2
1.5 Depiction of Chapters ..2

Chapter 2 – Background ..3
2.1 Processes ...3
2.2 Threads..4
2.3 Many-to-One Model ...5
2.4 One-to-One Model ..5
2.5 Many-to-Many Model...5
2.6 UNIX ..6

2.6.1 Threads ..6
2.6.2 Processes ...6

2.7 WINDOWS..6
2.7.1 Threads ...6
2.7.2 Processes ..6

2.8 The Co-operative Multithreading Model ...7
2.9 The Pre-emptive Multithreading Model ..7
2.10 Deadlock & Starvation...8
2.11 Deadlock prevention ..9

2.11.1 Attacking Mutual exclusion ..9
2.11.2 Attacking Hold and wait ...9
2.11.3 Attacking No pre-emption ...9
2.11.4 Attacking Circular wait ..9

2.12 Deadlock avoidance...10
Chapter 3 – Requirements..11

3.1 Original Requirements:..11
3.1.1 The Producer/Consumer Requirements: ..11
3.1.2 The Philosophers requirements: ...12
3.1.3 Extra personal requirement:...13

3.2 Altered Original Requirements:...13
Chapter 4 – Methodology ..14

4.1 Similarities in Methodologies..14
4.2 Risk Assessment ..14
4.3 Implemented Methodology..16

Chapter 5 – Design ..17
5.1 Design of Producer/Consumer Visualisation..17
5.2 Java & C implementation using JNI ...19
5.3 100% Java Implementation...23

5.3.1 A Java Single Applet Design...23
5.3.2 A Three Applet Java Design ...24

5.4 Producer/Consumer Class Diagrams ...26

Chapter 6 – Implementation ..31
6.1 The Basic Algorithm..31

6.1.1 The Bounded Buffer: ...32
6.1.2 The Producer: ...32
6.1.3 The Consumer:..33

6.2 Amendments to the Producer Algorithm:..34
Chapter 7 – Testing..46

7.1 Types of Testing Levels:..46
7.2 Testing Techniques ..47
7.3 Program Test..48

7.3.1 Unit Testing...48
7.3.2 Integration (Sub-System) Testing..50
7.3.3 System Testing...50
7.3.4 Regression Testing ..50
7.3.5 Stress testing ...51

7.4 Test Cases ..51
Chapter 8 – Critical Evaluation & Conclusions...55
Bibliography ..58

LIST OF FIGURES

Figure 1 – The life of a Thread ..5
Figure 2 – Deadlock...8
Figure 3 – Fowler’s Incremental Software Development Process...............................15
Figure 4 – The Producer/Consumer GUI look...17
Figure 5 – The Main Menu Component ..18
Figure 6 – The Main Buttons Component ...18
Figure 7 – The Main Animation Component...18
Figure 8 – The Control Panel Component ...18
Figure 9 – The Animation Path of the Item. ..19
Figure 10 – Java and C Interfacing using JNI ...21
Figure 11 – 100% Java class implementation..24
Figure 12 – The three JApplet Mechanism..25
Figure 13 – Producer/Consumer Concept..31
Figure 14 – Final Implemented Producer Algorithm...44

LIST OF CODE SAMPLES

Code Sample 1 – C POSIX Standard system calls ..23
Code Sample 2 – Amended Producer Code...36
Code Sample 3 – Synchronization in Java...37
Code Sample 4 – The Animation Sequence ..40
Code Sample 5 – Infinite thread loop ...41
Code Sample 6 – The Thread Termination Technique..42
Code Sample 7 – The Thread Activation, De – Activation Technique43
Code Sample 8 – The original timer method ...49
Code Sample 9 – The amended Timer Method ...49
Code Sample 10 – Determining the Operating System ...57

LIST OF CLASS DIAGRAMS

Class Diagram 1 – MainAnimationApplet.java...27
Class Diagram 2 – BoundedBuffer.java ..28
Class Diagram 3 – Semaphore.java ...28
Class Diagram 4 – Producer.java...29
Class Diagram 5 – Consumer.java...29
Class Diagram 6 – ControlPanel.java ..29
Class Diagram 7 – MainButtons.java ..30
Class Diagram 8 – MainMenu.java ...30

LIST OF TABLES

Table 1 – Item range coordinates relative to the Window...39
Table 2 – Animation Panel Test Case..52
Table 3 – Main Menu Test case...53
Table 4 – Main Buttons Test Case...53
Table 5 – Control Panel Test Case...54

Chapter 1- Introduction

The purpose of this chapter is to describe briefly the aim of this project. In addition it outlines
the context of each chapter of which the dissertation includes.

1.1 Aim of Project

The aim of the project is to visualize concurrent systems, i.e. processes which operate in
apparently the same time, from within a single computer system with a single CPU. The
motivation is to demonstrate the problems that arise when processes that communicate with
each other through a shared resource(s) do not do so in a synchronized manner.

The user interface and presentation of this problem with the use of 2D visualization allows
the user(s) to visually witness the problems and also give them the facility to make
adjustments through a menu and control panel.

1.2 Running Environment

The implementation of the code was originally intended to be targeted under the SOLARIS
UNIX and variant platforms. It was later changed to include Windows environments as well,
which led to the use of 100% Java programming as opposed to a mixture of both Java and C.
This meant that the software would run in theory on any UNIX clone and any Windows
version. In practice, incompatibilities and inconsistencies arose with the two Operating
Systems existing on campus, SOLARIS 2 and Windows XP.

1.3 Programming Language

The initial design intended to use a mixture of Java and C, the former for its graphics and the
latter for its low level standard POSIX system calls. JNI would act as the translator between
the two programming languages. POSIX standards were part of the initial Requirements.
This later changed during the Design/Implementation to 100% Java standards due to
experienced problems in SOLARIS 2 with the use of JNI. C alone could not be used due the
time constraints requiring to self learn the X11/Motif package libraries.

Page 1 of 58

1.4 Technique

The subject of Concurrency was new to me. The approach I chose was to design, implement
and test in an incremental manner. Experimenting in this way gave me the opportunity to see
what was feasible in terms of practical programming and also gave me ideas of what
graphically to show in my application. In general, the dissertation was more practical, my
individual theoretical concepts were expanded with the experimentation of programming and
explaining the output phenomena by researching with books or the internet.

1.5 Depiction of Chapters

The dissertation is structured as follows:

• Chapter 2 - Explains the subject of Concurrency and its relation to various
operating systems on computers with a single CPU. How this is achieved, elaborating
the benefits and also the problems that may arise.

• Chapter 3 - Provides a list of requirements, functions and details for the process of

constructing the software system. These requirements set out what the software
package should do, and define constraints on its operation and implementation.

• Chapter 4 - Describes briefly several possible methodology principles, similar

phases which exist between them and finally which of those described was chosen as
opposed to the others for the development of this project’s software according to the
requirements outlined in Chapter 3.

• Chapter 5 - Describes the main design of the UI of the Software and the various

implementation approaches that could be used to accomplish it. With each
implementation approach its corresponding problems and risks are described.

• Chapter 6 - Explains the implementation of the successful chosen design developed

in Chapter 5 and elaborates on certain interesting algorithms used to accomplish the
requirements specified in Chapter 3.

• Chapter 7 - Describes the strategy used to produce and carry out test cases which

would be used to see if the requirements outlined in Chapter 3 were fulfilled
accurately.

• Chapter 8 - Outlines the positive and negative aspects of the project that occurred

during the process of the development. An evaluation of the final product is done to
see if the requirements were fulfilled as planned.

• Bibliography

Page 2 of 58

Chapter 2- Background

The purpose of this Chapter is to explain the subject of Concurrency and its relation to
various operating systems on computers with a single CPU. How this is achieved, elaborating
the benefits and also the problems that may arise.

The CPU (Central Processing Unit) is the heart of any computer, but the operating system is
the brain which [1, 2, 5, 6].

• Manages the hardware and software resources of the computer system. These
resources include such things as the processor, memory, disk space, etc.

• Provides a stable, consistent way for applications to deal with the hardware without
having to know all the details of the hardware.

Managing the hardware and software resources is very important, as various programs
compete for the attention of the CPU and demand memory, storage and I/O for their own
purposes. In this capacity, the operating system makes sure that each application gets the
necessary resources in turn without any interference.

The second task is to provide a consistent application interface. A consistent application
program interface (API) allows a software developer to write an application on one computer
and have a high level of confidence that it will run on another computer of the same type,
even if the hardware specifications of the other machine for example, amount of memory or
the quantity of storage is different on the two machines. Even if a particular computer is
unique, an operating system can ensure that applications continue to run when hardware
upgrades and updates occur, because the operating system and not the application is charged
with managing the hardware and the distribution of its resources

Managing the processor comes down to two related issues.

• Ensuring that each process and application receives enough of the processor's time to
function properly.

• Using as many processor cycles for real work as is possible.

2.1 Processes

A Process has the following characteristics [1, 2, 5, 6].

• Each process has its own separate program space.
• Process A cannot read or write into process B's program space.
• Each process carries the same overhead in terms of bulk that an EXE or executable

file requires.

The operating system arranges the execution of applications so that it seems that there are
several things happening at once. The CPU can only do one thing at a time. In order to give
the appearance of lots of things happening at the same time, the operating system has to
switch between different processes thousands of times a second.

Page 3 of 58

• A process occupies a certain amount of RAM. It also makes use of registers, stacks
and queues within the CPU and operating-system memory space.

• When two processes are multi-tasking, the operating system allots a certain number
of CPU execution cycles to one program.

• After that number of cycles, the operating system makes copies of all the registers,
stacks and queues, used by the processes and notes the point at which the process
paused in its execution.

• It then loads all the registers, stacks and queues, used by the second process and
allows it a certain number of CPU cycles.

• When those are complete, it makes copies of all the registers, stacks and queues, used
by the second program and loads the first program.

All of the information needed to keep track of a process when switching is kept in a data
package called a process control block which contains the following.

• An ID number that identifies the process.
• Pointers to the locations in the program and its data where processing last occurred.
• Register contents.
• States of various flags and switches.
• Pointers to the upper and lower bounds of the memory required for the process.
• A list of files opened by the process.
• The priority of the process.
• The status of all I/O devices needed by the process.

When the status of the process changes, from pending to active, for example, or from
suspended to running, the information in the process control block must be used like the data
in any other program to direct execution of the task-switching portion of the operating
system. This process swapping happens without direct user interference and each process gets
enough CPU cycles to accomplish its task in a reasonable amount of time.

2.2 Threads

A thread is similar to a process in that a thread and a running program are both a single
sequential flow of control. However, a thread is considered lightweight because it runs within
the context of a complete program and takes advantage of the resources allocated for that
program and the program's environment [14]. This allows it to be more memory efficient
because it can be contained within a single executable. The Operating System Kernel does not
have to copy the entire message from one program space to another which allows it to run
faster because switching between Threads does not take the same amount of workload as a
process. As a sequential flow of control, a thread must carve out some of its own resources
within a running program this entails having its own execution stack and program counter.
On the other hand Threads are typically not loadable. That is, to add a new thread, you must
add the new thread to the source code, then compile and link to create the new executable.
Processes are loadable, thus allowing a multi-tasking system to be characterized dynamically.
For example, depending upon system conditions, certain processes can be loaded and run to
characterize the system. However, the same can be accomplished with threads by linking in
all the possible threads required by the system, but only activating those that are needed,
given the conditions. Threads can walk over the data space of other threads. This cannot
happen with processes. If an attempt is made to walk on another process an exception error
will occur. The following diagram shows the states that a Java thread can be in during its life.
It also illustrates which method calls cause a transition to another state. This figure is not a

Page 4 of 58

complete finite state diagram, but rather an overview of the more interesting and common
facets of a thread's life.

Figure 1 – The life of a Thread

(From: Sun Microsystems [9])

2.3 Many-to-One Model

This technique maps many user-level threads to one kernel thread. Thread management is
done in user space, so it is efficient. The entire process will block if a thread makes a blocking
system call. Multiple threads are unable to run parallel on multiple CPU’s because only one
thread can access the kernel at any one time [8].

2.4 One-to-One Model

This technique maps each user thread to a kernel thread. In comparison with the Many-to-One
Model it provides better concurrency in that it allows another thread to run when a blocking
system call is created and also threads can run on multiple CPU’s. But because each thread
has a corresponding Kernel thread a burden is created on the application causing restrictions
on the number supported by the system [8].

2.5 Many-to-Many Model

This technique connects the user level threads to an equal or less number of Kernel threads. A
User-level threads library provides sophisticated scheduling of user-level threads above
kernel threads. The kernel needs to manage only the threads that are currently active. By
removing restrictions on the number of threads that can effectively be used in an application
there is less programming effort. A many-to-many multithreading implementation thus
provides a standard interface, a simpler programming model, and optimal performance for
each process [8].

Page 5 of 58

2.6 UNIX

2.6.1 Threads

Threads in modern UNIX environments are managed and structured according to the
POSIX.1c standard [3, 4]. When a thread is created in UNIX, it stores its execution stack,
program counter value, register set and thread state (active, dead, etc.). Each thread accesses
the same block of memory, so if there is only one processor only one thread can run at a time.
Threads can simulate multiprocessor behaviour using mutexes or semaphores. Having
multiple threads within a process and switching from thread to thread, however, takes much
less time than having multiple processes switching from process to process (called context
switching) [1, 2, 5, 6].

2.6.2 Processes

When a program is executed on a UNIX system and memory is allocated for its execution, the
program becomes a process. Processes are managed by the operating system, and are
structured hierarchically (i.e. processes have parent-child relationships) . Each running
process can have one or more threads, which are sequences of instructions running one after
another. In a multiprocessor system, each of these threads can be assigned to a different
processor, so that a single process (or running program) can be handled by multiple
processors by dividing its threads among them.

2.7 WINDOWS

2.7.1 Threads

When a Windows thread is created, it stores a thread ID, two execution stacks and a storage
area that other programs can use to store information within the thread. In addition, the thread
objects themselves have many attributes and methods that can be accessed programmatically.
Attributes include execution time, priority, and exit status. Methods (or services) include
thread creation, access, and termination.

2.7.2 Processes

Each process is implemented as a Windows object, which means it can take advantage of
object properties and services. Unlike UNIX, Windows stores each process object as a
separate entity, and there is no relationship between processes. Each process in Windows can,
as in UNIX, have one or more threads that can run simultaneously on multiple processors if
they exist, or share memory allocation if there is only one processor. In Windows, however,
each process must have at least one running thread. This is because the thread actually
contains the executable program. Each process in Windows is allocated its own memory by
Windows' virtual memory manager. For each thread within a process, a unique thread object
is created that maintains that thread's attributes. This differs from how UNIX handles thread
attributes, in that UNIX stores pointers to attribute structures, and multiple threads can point
to the same attribute [16].

Page 6 of 58

2.8 The Co-operative Multithreading Model

In a cooperative system, a thread retains control of its processor until it decides to give it up
(which might be never). The various threads have to cooperate with each other or all but one
of the threads will be "starved" (meaning that they will never be given a chance to run).
Scheduling in most cooperative systems is done strictly by priority level. When the current
thread gives up control, the highest-priority waiting thread gets control. An exception to rule
is Windows 3.x, which uses a cooperative model but doesn't have a good scheduler and
therefore the window that has the focus gets control [17].

The main advantage of cooperative multithreading is that it's very fast and has a very low
overhead. A context swap, a transfer of control from one thread to another, can be performed
entirely by a user-mode subroutine library without entering the OS kernel. In NT, which is a
worst-case example, entering the kernel wastes approximately 600 machine cycles [16]. A
user-mode context swap in a cooperative system does little more than a C set jump/long jump
call would do. Thousands of threads can be in an application significantly impacting
performance. Since loosing control involuntarily in cooperative systems is not an issue,
therefore synchronization is neither. That is, a programmer need not worry about an atomic
operation being interrupted. The main disadvantage of the cooperative model is that it's very
difficult to program cooperative systems. Lengthy operations have to be manually divided
into smaller chunks, which often must interact in complex ways.

2.9 The Pre-emptive Multithreading Model

In a pre-emptive model, a sort of timer is used by the operating system itself to cause a
context swap. The interval between timer ticks is called a time slice. Pre-emptive systems are
less efficient than cooperative ones because the thread management must be done by the
operating-system kernel, but it is easier to program with the exception of synchronization
issues and tend to be more reliable since starvation is less of a problem. The most important
advantage to pre-emptive systems is parallelism. Since cooperative threads are scheduled by a
user-level subroutine library, not by the OS, the best a programmer can get with a cooperative
model is concurrency. To get parallelism, the OS must do the scheduling. Of course, four
threads running in parallel will run much faster than the same four threads running
concurrently.

Some operating systems, like Windows 3.1, only support cooperative multithreading. Others,
like NT, support only pre-emptive threading. (You can simulate cooperative threading in NT
with a user-mode library like the "fibres" library [16]. But fibres are not fully integrated into
the OS.) Solaris provides the best (or worst) of all worlds by supporting both cooperative and
pre-emptive models in the same program.

Page 7 of 58

2.10 Deadlock & Starvation

2.10.1 Deadlock

Deadlock can be defined as the permanent blocking of a set of processes that either compete
for system resources or communicate with each other.

For deadlock to exist the conditions below must all exist, without all of these, a deadlock is
not possible [1, 2, 5, 6]:

1. Mutual Exclusion At least one resource must not be shareable.
2. Hold and Wait At least one process must be holding a resource and waiting to

acquire a resource currently held by another process.
3. No Pre-emption Resources cannot be taken away from a process; it must release

them as a normal event.
4. Circular Wait A process holding one resource (A) and waiting for another (B) must

be matched by another process that needs A and holds B.

Normal deadlock occurs when two or more processes are blocking each other in a cycle of
granted and blocked lock requests. For example, say Process P1 has a lock on Resource R1
and is blocked waiting for a lock on Resource R2 held by Process P2. Process P2 has a lock
on Resource R2 and is blocked waiting for a lock on Resource R3 held by Process P3, and
Process P3 has a lock on resource R3 and is blocked waiting for a lock on Resource R1 held
by Process P1. This scenario is illustrated in the following figure.

Figure 2 – Deadlock

2.10.2 Starvation

Starvation can be defined as the indefinite waiting of a process due to another process using
the requested resources. Therefore deadlock implies starvation but not vice versa.

Page 8 of 58

2.11 Deadlock prevention

A deadlock is not desirable therefore some methods exist to prevent deadlocks. Simple
strategies are available to prevent the occurrence of a deadlock with each of the above defined
four conditions. These are as follows [1, 2, 5, 6].

2.11.1 Attacking Mutual exclusion

In general, this condition cannot be disallowed. For example, it is not realistic for two
processes to print on a same sheet of paper at the same time.

2.11.2 Attacking Hold and wait

This condition is preventable since a process may request for the resources it needs all at
once. If its need can be met, then the operating system just does it, otherwise blocks the
process until all the resources are available. However this method raises two problems listed
below.

• Processes may need some resources for part of their lives. It is inefficient for a process to
own all the resources all the time.
• In some cases, it is impossible for a process to know in advance what resources it will need
during its execution.

2.11.3 Attacking No pre-emption

This condition can be prevented in two ways. First, if a process is denied a further request
while it has already held some resources, it must release all them and request them again
together with the additional resources. Alternatively, if a process requests a resource that is
currently held by another process, the operating system may pre-empt the resource from the
second process and allocate it to the first one. Note that this approach is practical only when
the resource of concern could be in some way restored to its original state.

2.11.4 Attacking Circular wait

In a systematic way, we may assign an index to each resource in the system, and all the
processes are required to request for the resources in the order of increasing index. However
this method may be inefficient. For example, a process may need to manipulate a resource
with a larger index far before another resource associated with a smaller index is needed. To
comply with this hold-and- wait prevention strategy, the second resource will have to be
requested first, thus be held without utilization for a long time.

Page 9 of 58

2.12 Deadlock avoidance

Different from deadlock prevention, where one of the four necessary conditions is prevented
in some way, deadlock avoidance takes another approach, which is the progress of resource
allocation in the operating system is monitored dynamically and whenever a deadlock is
going to happen, some measure is taken to avoid it. Thus an evaluation process should be
performed, when a resource allocation is requested, to make sure a deadlock will not happen.

Page 10 of 58

Chapter 3- Requirements

The purpose of the chapter is to provide a list of requirements, functions and details for the
process of constructing the system. These requirements set out what the software package
should do, and define constraints on its operation and implementation.

Due to the incremental development approach followed for this project, the requirements
have been through changes depending on the experience gained from the coding exploration.
This helped to understand the feasibility of each requirement in terms of both design and
implementation.

3.1 Original Requirements:

The name of the Topic is Concurrency and Visualization. This project then sub-divides it into
the following subjects:

• Producer/Consumer
• Dining Philosophers

The problems and their corresponding solutions should be explained visually through the use
of 2D graphics. If possible both problems should be in the same applet. The menu system
should allow the user to choose the desired one.

Target Platform: UNIX and variants
 POSIX standards

3.1.1 The Producer/Consumer Requirements:

• Give the user the ability to add
o A Producer Process.
o A Consumer Process
o A Bounded Buffer.

 The user of the program should be able to do the above with the use of a menu or by
directly using the mouse. With the use of a mouse, by clicking on a certain rectangular region
on the screen visible to the user the corresponding process or buffer should be displayed.

• Give the ability to the user to change the size of the buffer. (Maximum of: 10 slots
and a minimum of: 1 slot) by using the menu system.

• Give the ability of the user to adjust the speed of the animation, through the use of a
menu system.

• The program should highlight the important code on each process (Producer and
Consumer) being executed.

• The program should allow the user to change the priorities of each of the processes
even while the animation is executing.

• Three buttons should exist: Start, Stop and Reset.

Page 11 of 58

o Start Button: Should activate the animation and start the processe(s)
execution. Only if there is a Bounded Buffer.

o Stop Button: Should completely stop the animation. This should happen until
all the locks are released. Processes should be terminated naturally.

o Reset Button: Should Initialize the Bounded Buffer. Only when the
animation has stopped.

• Messages to the user:

o When the producer is the only process active in the animation. When the

buffer is filled completely, a message should be displayed informing the user
that a deadlock has occurred and that the Consumer must be added for the
deadlock to be removed.

o When the Consumer is the only process active in the animation. When the
buffer is completely empty, a message should be displayed informing the
user that a deadlock has occurred and that the Producer should be added for
the deadlock to be removed.

o The animation cannot start unless a buffer exists. The start button should not
be enabled. The message should state this.

o Any other messages should be displayed that are important.

3.1.2 The Philosophers requirements:

The user should have the ability to choose how many philosophers should be sitting on the
table in the range of (Maximum of: 7 and Minimum of: 3).

• Two buttons should exist: Start, Stop.
o Start Button: Should activate the animation and start the processe(s)

execution. Provided there are Philosophers sitting around the table in the
ranges stated above. If not Start should not be enabled.

o Stop Button: Should completely stop the animation. This should happen until
all the locks are released. Processes (Philosophers) should be terminated
naturally. Stop and Start will be deactivated until the sequence is complete,
by which then the Start button will be enabled.

• The program should highlight the important code on each process (Philosopher 1,

Philosopher 2 …..) being executed.
• The program should allow the user to change the priorities of each of the processes

even while the animation is executing.
• The program should indicate which Philosopher is:

o THINKING
o HUNGRY
o EATING

Page 12 of 58

3.1.3 Extra personal requirement:

• To demonstrate knowledge of both Java and C by interfacing them together to
produce the software package through some method and also to fulfil the above main
requirement that of the POSIX standards.

3.2 Altered Original Requirements:

These were the altered set of requirements.

• Platform: UNIX variants and Windows.
• Standards: Java standards (use of threads).
• Product: Producer/Consumer and Philosopher problems can be separate programs.
• Buttons: Reset Button excluded from Producer/Consumer program (Automated).

Page 13 of 58

Chapter 4 – Methodology

The purpose of this chapter is to describe briefly several possible methodology principles,
similar phases which exist between them and finally which of those described was chosen as
opposed to the others for the development of this project’s software according to the
requirements outlined in Chapter 3.

4.1 Similarities in Methodologies

A software methodology is the set of rules and practices used to create computer programs. A
heavyweight methodology has many rules, practices, and documents. It requires discipline
and time to follow correctly. A lightweight methodology has only a few rules and practices or
ones which are easy to follow. It allows adaptation to external forces, but depends on frequent
testing such as regression testing and refactoring to ensure system quality.

When considering a software system, one can observe the system from a life cycle view. This
means that the system is observed over time from the first notion of existence to the
settlement of the system. Certain different software development life cycles have several
notions in common and similar divisions of phases. These common and similar divisions can
be grouped into the following [11]:

Analysis: To understand the activities that the software system is meant to support.
Design: To develop a detailed description of the software system.
Implementation: To formalize the design in an executable way.
Integration: To adjust the system to fit the existing software environment.
Test: To identify and eliminate the non desirable effects and errors and to verify the software
system.

4.2 Risk Assessment

Oftentimes in projects, a plan is created for risk every time a system is developed, and an
assessment is done of that risk. Both managers and technical personnel develop risk plans for
current projects, based on historical data. However, quite often the risks are identified and
then forgotten throughout the product's lifecycle. They are listed and put on the risk watch
list, but not addressed until they become problems. To prevent this from happening, at each
"project review" the Risk Owner should give the status of the mitigation or contingency plan,
and the project team should decide to [11]:

1) Take action on the risk.
2) Eliminate the risk.
3) Retire the risk.

In order to handle this risk, new methods must be formulated essentially to be able to analyze
and assess them. This is done with the use of software prototyping which can be used in the
following three main areas:

• Exploration

Page 14 of 58

• Experimentation
• Evolution.

Exploratory approaches use prototypes for finding requirements early. Rapid throwaway
Prototyping and Boehm’s spiral model fall within this classification. Experimental
approaches use prototypes to investigate certain kinds of feasibilities or possibilities within
the process of development. The feasibility investigated may be technical, increasing
efficiency, etc. The evolutionary approaches use the philosophy of the prototyping process
itself and employ it as the methodology for the software development process as a whole.
Incremental development and evolutionary system development can both be viewed as types
of evolutionary software development approaches.

Elaboration Construction

(Realization)
Inception

(Conception) (Initialization)

Transition
(Finalization)

Figure 3 – Fowler’s Incremental Software Development Process

(from Biel School of Engineering [7])

• Inception:
 The birth of a project and the initial idea.
 Establish the business rationale.
 Getting the commitment of the sponsors to go further.
• Elaboration:
 Collect more information.
 Create or get the user requirements.
 Establish the core architecture of the software and do the planning.
• Construction:

Produce the software iteratively and each iteration yielding a workable piece of
software.

• Transition:
 Do the beta testing;
 Make the performance optimization.

Prototyping is the use the development of one or two working versions of various aspects of a
system. It is not production code but it may eventually become pre-production code or it may
be completely discarded. In the prototyping effort, maintainability of the code is not the main
concern nor is documenting it. Code resulting from prototyping is often used to train the
programmers. Only after it has written specifications resulting from the experience with the
prototype should the programmer or team start the formal development process. A prototype
produces "running" software and the production development produces "working" software.

Page 15 of 58

4.3 Implemented Methodology

In the case of this project the reason for using incremental development as opposed to the
waterfall method was mostly due to the unfamiliar topic area. This was a risk that needed to
be seriously taken into account. On one hand, in the waterfall method each phase is formally
ended with fully elaborated written documentation. This is time-consuming to produce, not
suitable for this project. User requirements are frozen after requirements analysis and
therefore cannot be changed during development process. In the real world the customer can
only assess the project at the very end, when the finished software is handed over; at that time
major mistakes may be uncovered. The waterfall model is a linear approach, quite inflexible.
At each phase, feedback to previous phases is possible (but is discouraged in practice). On the
other hand incremental development allows a project to construct the software in incremental
stages where each stage adds additional functionality. Each stage consists of design, code,
unit test, integration test and delivery. It allows the project team to put functional software
into the hands of the customer much earlier than the waterfall model. Stages can be planned
in such a way that can determine what functionality needs to be done first i.e. choosing to
deliver the most important functionality to the customer first. It can provide tangible measures
of progress but requires careful planning at both the project management level and the
technical level. The project management team monitors the progress of the project by
examining the end product and duration of each increment, building an increasingly accurate
picture of the size of the project and the rate of progress. Although the Incremental
development can be viewed as a type of evolutionary software approach, in the case of this
project the author also used it as an exploratory and experimental approach.

The next part of the dissertation shows emphasis on describing the design, implementation
and testing of the Producer/Consumer problem. The internal software for the Dining
Philosophers problem was also developed (The code is available on the accompanying CD).
Visualisation software for that problem was not developed, but the concept is very similar to
that of the producer/consumer.

Page 16 of 58

Chapter 5 – Design

The purpose of this chapter is to describe the main design of the UI of the Producer/Consumer
Software and the various implementation approaches that could be used to accomplish it,
these being a proposed design aimed at a Java and C implementation and two further designs
aimed at 100% Java implementation. With each implementation approach its corresponding
problems and risks are described.

5.1 Design of Producer/Consumer Visualisation

Detailed desired designs were created for the Producer/Consumer problem given below,
which the author strictly tried to abide by them.
Design includes:

• Menu System
o Edit
o Options
o Help

• Animation System
• Control Panel

o Producer Priority
o Consumer Priority
o Producer Code Steps
o Consumer Code Steps

The preferred final Interface is shown below in the diagram. The menu system is positioned
on the top part of the screen. Below it is the buttons panel and to the right is another panel
which include the priorities of each process and the major code listing.

Figure 4 – The Producer/Consumer GUI look

Page 17 of 58

The GUI is divided into 5 parts:

• Menu System.

Edit Options Help

 Figure 5 – The Main Menu Component

• Buttons Panel

 Figure 6 – The Main Buttons Component

• Animation Panel

 Figure 7 – The Main Animation Component

• Control Panel

 Figure 8 – The Control Panel Component

Producer Priority

Consumer Priority

Empty.P()

Mutex.P()

Critical Code

Mutex.V()

Full.P()

Full.P()

Mutex.P()

Critical Code

Mutex.V()

Empty.P()

ddddddddddddddd Start Stop Reset

Page 18 of 58

The next figure tries to show the animation path of the Item created by the producer targeted
for the next available slot in the Memory Bounded Buffer and the path taken when its turn
comes for it to be retrieved by the Consumer. A formula close to that of y=x^3 was
used to simulate the below movement. The animation sequence can be divided into four parts.

• Item leaving Producer heading for the Buffer.
• Item inside Buffer moving next to the End of the Buffer or next to the Previous

inserted Item
• Item leaving Buffer heading toward Consumer.
• All Items inside buffer shifting one place to the right.

 Figure 9 – The Animation Path of the Item.

The final applet went through a variety of designs.

5.2 Java & C implementation using JNI

The first design was to include both the Java and C language with the use of JNI (Java Native
Interface). JNI defines a standard naming and calling convention so the Java virtual machine
can locate and invoke native methods. JNI is built into the Java virtual machine so the Java
virtual machine can invoke local system calls to perform input and output, graphics,
networking, and threading operations on the host operating system.

8

Animation path of the item using a
variation of the (y=x^3)
Cartesian formula. (Departing
from the Producer thread with
final destination the Consumer
thread via the bounded buffer)

Consumer thread

Origin (0,0)
gg.translate(400.0, 300.0);

Producer thread

Bounded Buffer

Random generated
number

8 8

Page 19 of 58

A few problems arose during the implementation. On making a simple graphical user
interface which reflected somewhat that of the final product the communication of the java
class would not work correctly when calling the C native function under Solaris 2 platform,
although it worked fine in Windows. The problem specifically was that the function being
called would not execute until the GUI interface was terminated either by closing the window
or pressing Ctrl – C. The design was terminated as soon as this problem arose. At the time,
possible reasons for this problem where researched. The main reason that seemed plausible
after some time was that:

• Solaris 2 handles threads slightly differently than Windows. On Windows, a Java
SWING program has its own daemon thread for the GUI. Therefore calling the C
DLL from Java program would run on the program thread in parallel with the daemon
swing thread. On Solaris this is not so, the GUI needs to be declared on a separate
thread by the programmer.

A sample of the Design although not complete is given in the diagram on the next page.

All the system calls would be implemented in the C language and then compiled in SO in
UNIX equivalent to a DLL in Windows. As soon as the Start Button was pressed in the JAVA
ApplicationGUI it would call a method in the compiled SO listed in the ApplicationGUI.h
header file.

The DLL or SO would

• Create a shared memory.
• Create two Child Processes

o Producer
o Consumer

Using POSIX standards • Create the Semaphores
o Empty
o Full
o Mutex

The sample C code is demonstrated in the next pages.

Page 20 of 58

C - Module
Includes the POSIX

System Calls
Java – Module
Main() Starting

Program Source Code compiled to a
UNIX .so (extension)

 cc -G -I/…/include

 Figure 10 – Java and C Interfacing using JNI

Java Main Program
Header File

#include <Java_Header.h>

Java GUI source code
extends JApplet

Java GUI class

Extends Java_GUI

 -I/…/solaris

C -> .so compiled
module equivalent to

Windows .dll

Java Main Program
File

Source Code
compiled using

javac

Source Code
compiled using

Javah -jni

Source Code
compiled using

javac

Three Separate Files:

• Posix.so
• ApplicationGUI.java
• ApplicationGUI.h

Application.java is the executable file
activate by java Application

Page 21 of 58

ShmID = shmget(IPC_PRIVATE, BUFFSIZE*sizeof(int),
IPC_CREAT | 0666);

 if (ShmID < 0) {
 }

 buffer = (int *) shmat(ShmID, NULL, 0);
 if ((int) buffer == -1) {
 }

Childpid1=fork();

 if (childpid1==-1) {
 }
 if (childpid1==0) {
 // Code placed here for Child Process 1
 exit(0);
 }

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <unistd.h>
#include <sys/sem.h>
#include <signal.h>
#include <time.h>

// Variables for Shared Memory.
 int ShmID;
 int *buffer;
 pid_t childpid1, childpid2;

 // Variables for Semaphores.
 int mutexid;
 int fullid;
 int emptyid;

void semaphore_p (int);
void semaphore_v (int);
void clear_all (int);

Memory Shared
Buffer

Childpid2=fork();

 if (childpid2==-1) {
 }
 if (childpid2==0) {
 // Code placed here for Child Process 1
 exit(0);
 }

Page 22 of 58

// Define three Semaphores. Type (int)
 Mutexid = semget(IPC_PRIVATE, 1, IPC_CREAT | 0666);
 emptyid = semget(IPC_PRIVATE, 1, IPC_CREAT | 0666);
 fullid = semget(IPC_PRIVATE, 1, IPC_CREAT | 0666);

if(semctl(mutexid, 0, SETVAL, 1) == -1)
{// Check for initialization error}
if(semctl(emptyid, 0, SETVAL, buffer) == -1)
{// Check for initialization error}
if(semctl(fullid, 0, SETVAL, 0) == -1)
{// Check for initialization error}

void semaphore_p(int semid)
{
 // initialize values
 struct sembuf op;
 op.sem_num = 0;
 op.sem_op = -1; // dec by one
 op.sem_flg = 0; // no flags

 if(semop(semid, &op, 1) == -1)
 printf("semaphore_p: semop error\n");
}

void semaphore_v(int semid)
{
 // initialize values
 struct sembuf op;
 op.sem_num = 0;
 op.sem_op = 1; // inc by one
 op.sem_flg = 0; // no flags

 if(semop(semid, &op, 1) == -1)
 printf("semaphore_v: semop error\n");
}

 Code Sample 1 – C POSIX Standard system calls

5.3 100% Java Implementation

It was later decided to go on to another design, which seemed more reliable, using 100% Java
in the design and implementation. The reason for this was that Java allows for the ultimate
degree of code portability. Finally the same program can be executed securely on any
computer, over any operating system, as long as the Java Virtual Machine runs on the
underlying system. Through the use of its extensive class libraries, programmers have
discovered that development time and effort are much reduced: the language provides
extensive resources for development of user interfaces

5.3.1 A Java Single Applet Design

With this approach many other problems were experienced. Through the use JApplet there
were times in the implementation that the Applet would not work in any Browser but would

Page 23 of 58

work in appletViewer. One major problem was the addition of a menu system within the
same applet. When run on a browser the menu system could not be activated while the
animation was running at the same time. When it did activate, due to continued clicks by the
user the response was very slow, this problem did not exist on the appletViewer. The main
reason that seemed plausible after some time was that:

• within the Browser exists a security manager that checks all sensitive operations, in
our case defined in the Producer/Consumer applet program UI. These operations
violated certain rules and therefore were disabled by the interpreter at times.

 MainButtons MainMenu

Semaphor extends JButton extends JMenuBar

BoundedBuffer MainAnimationApplet

 extends JApplet

Consumer

extends Thread
Producer

extends Thread

MainControlPanel

Figure 11 – 100% Java class implementation

Above is a diagram depicting the various classes that would be used in the 100% Java
implementation.

5.3.2 A Three Applet Java Design

It was decided to create a menu on a different applet, and have these two applets
communicate with each other. This worked fine, until a third one was needed to act as the
control panel which would add some direct functionality for the user. A new problem arose
when the main applet had to communicate with the control panel. Under all the browsers
including Windows Explorer, Netscape and UNIX Solaris Mozilla the applets could not
communicate.

Page 24 of 58

The probable cause after researching on the web seemed to be that browsers add certain
restriction on applet communications. This problem could not be bypassed and therefore, an
attempt to re-engineer the original single applet design was attempted. However, when it
comes to Swing and JApplets, things are a little more complicated. The mistake made was
that the author was drawing directly on the JApplet canvas or on other top-level Swing
component. This was fatal mistake, instead a separate component should have been used as a
drawing surface, and this should have been added to the JApplet. It was necessary to write a
class to represent the drawing surface. Programming a JApplet that does custom drawing
always involves writing at least two classes: a class for the applet itself and a class for the
drawing surface. Typically, the class for the drawing surface is defined as a subclass of
javax.swing.JPanel, which by default is nothing but a blank area on the screen. A
JPanel, like any JComponent, draws its content in the method paintComponent. In the case of
the program being built, the drawing surface was made as an internal class within the JApplet
itself.

Below is the diagram depicting the three applet design. The communication is done through
the use of the statement getAppletContext() which is imported from java.applet.

MainMenuApplet MainControlPanelApplet

Class Class

MainAnimationApplet

Class

Figure 12 – The three JApplet Mechanism

On the next page are the set of Class diagrams with their respective variables and methods.

Page 25 of 58

5.4 Producer/Consumer Class Diagrams

MainAnimationApplet

 - mainButtons:MainButtons;
 - mainMenu:MainMenu;
 - controlPanel:ControlPanel;
 - drawingSurface:Display;
 - timer:Timer;
 - timerPerformer:ActionListener;
 - buf:Image;
 - buf2D:Graphics2D;
 - theBuffer:BoundedBuffer;
 - theProducer:Producer;
 - theConsumer:Consumer;

 - messagetimerCount:int=0;
 - theItemCoordinateX:double=-100;
 - theItemCoordinateY:double=-100;
 - theItemCoordinateQ:double=10;
 - theItemCoordinateW:double=100;
 - theCorrectAnimationSequence:int=0;
 - theCorrectItemNo:int=0;
 - theRequestedSpeed:double=2;
 - theRequestedSizeOfTheBuffer:int=3;
 - memItemPosX:double=312;
 - theProducerMustWAIT:boolean=false;
 - theConsumerMustWAIT:boolean=false;
 - memItemPosY:int=169;
 - howManyItemsAreStored:int=0;
 - moveToTheNextEmptySlot:int=0;
 - displayTheProducerThread:boolean=false;
 - displayTheConsumerThread:boolean=false;
 - displayTheBoundedBufferSlots:boolean=false;
 - theTracker:MediaTracker = null;
 - theProducerConsumerImage:Image;
 - whichMessageToDisplay:int=0;
 - theAnimationMustTerminateAsSoonAsPossible:boolean=false;
 - theAnimationHasBegun:boolean=false;
 - hasTheProducerAlreadyBeenStarted:boolean=false;
 - hasTheConsumerAlreadyBeenStarted:boolean=false;
 - highlightTheProducerArea:boolean=false;
 - highlightTheConsumerArea:boolean=false;
 - theProducerPriority:int = 5;
 - theConsumerPriority:int = 5;

(MainAnimationApplet continued on next page)

Page 26 of 58

+ class Display extends JPanel

• + paintComponent(Graphics g): void
• + update(Graphics g):void
• + initTheInvisibleGraphicsContext(Graphics g):void
• + displayTheBoundedBuffer(Graphics g):void
• + whichAnimationSequence(Graphics g):void
• + displayTheProducerThreadImage(Graphics g):void
• + displayTheConsumerThreadImage(Graphics g):void
• + noOfItemsInTheBuffer(Graphics g):void
• + theVariousApplicationMessages(Graphics g):void

+ synchronized getTheThreadsCodeLocationAndDisplayIt(int threadCodeLocation
 ,int whichThread):void
+ synchronized getTheThreadsCodeLocationAndAnimateIt(
 int CorrectAnimationSequence,int CorrectItemNo):void
+ getTheUsersMainMenuChoice(int aChoice, int someExtraInfo):void
+ getTheUsersControlPanelChoice(int aProducerPriority
 ,int aConsumerPriority):void
+ getTheUsersButtonChoice(int aButton):void
+ stopTheConcurrencyandAnimation():void
+ startTheConcurrencyandAnimation():void
- class MouseHandler extends WindowAdapter implements MouseMotionListener,
 MouseListener

• +synchronized mouseMoved(MouseEvent evt):void
• +synchronized mousePressed(MouseEvent evt):void

Class Diagram 1 – MainAnimationApplet.java

Page 27 of 58

BoundedBuffer Class

 + BUFFER_SIZE: static final int =10;
 - theMainAnimationApplet: MainAnimationApplet;
 + buffer:int[];

 - mutex:Semaphore;
 - empty:Semaphore;
 - full:Semaphore;
 - deactivate:Semaphore;

+ in,count,out:int;
+ theValueSize:int=3;

+ producerHasPermissionToExit:boolean=true;
+ consumerHasPermissionToExit:boolean=true;

+ setTheSemaphores(int theValue):void
+ enter(int item):void
+ remove():int

Class Diagram 2 – BoundedBuffer.java

Semaphore Class

+ theMainAnimationApplet: MainAnimationApplet; + theBoundedBuffer: BoundedBuffer; + value:int=0;

+ synchronized P:void
+ synchronized V:void + synchronized Pz:void + synchronized Cz:void

Class Diagram 3 – Semaphore.java

Page 28 of 58

Producer Class

+ theBoundedBuffer:BoundedBuffer;
+ theMainAnimationApplet: MainAnimationApplet;

+ randomNumber:int=0;
+ loopFOREVER:boolean=true;

+ run():void
+ createRandomNumber():void

Consumer Class

+ theBoundedBuffer:BoundedBuffer; + theMainAnimationApplet:MainAnimationApplet;

 + randomNumber:int=0;

+ loopFOREVER:boolean=true;

 Class Diagram 4 – Producer.java

 Class Diagram 5 – Consumer.java

 ControlPanel

+ JPanel radioProducerPanel; + JPanel radioConsumerPanel;
 + JPanel producerPanelField;
 + JPanel consumerPanelField;

+ JPanel producerPanelCodeField;
+ JPanel consumerPanelCodeField;
+ TextField field1; + TextField field2;

 + TextField field3;
 + TextField field4;

+ TextField field5;
+ TextField field6;
+ TextField field7; + TextField field8;

 + TextField field9;
 + TextField field10;

+ TextField field11;
+ TextField field12;
+ TextField field13; + TextField field14;

 + TextField field15;
 + TextField field16;

+ initializeTheCodeThreadSteps():void
+ theCodeThreadSteps():void + thePrioritiesPanel():void

 + highlightTheCorrectCodeLocation(int aField, int whichThread):void

+ class checkProducerPriority implements ActionListener
+ class checkConsumerPriority implements ActionListener

Class Diagram 6 – ControlPanel.java

Page 29 of 58

 MainButtons

+ theAnimationApplet: MainAnimationApplet; + startButton: JButton();
 + stopButton: JButton();
 + theButtonPanel:new JPanel();

+ setTheButtons():void

 Class Diagram 7 – MainButtons.java

MainMenu

 - menuBar:JMenuBar();
 - addProducer: JCheckBoxMenuItem;
 - addConsumer: JCheckBoxMenuItem;
 - addBoundedBuffer: JCheckBoxMenuItem;

- changeSpeed: JMenuItem;
- changeSize: JMenuItem; - Tutorial: JMenuItem;

 - About: JMenuItem;

 - Edit:JMenu ("Edit");

- Options: JMenu ("Options");
- Help: JMenu ("Help");

 + displayTheMenu():void

+ class checkProducerPriority implements ActionListener
+ class checkConsumerPriority implements ActionListener

Class Diagram 8 – MainMenu.java

Page 30 of 58

Chapter 6 – Implementation

The purpose of this chapter is to describe the implementation of the design developed in the
previously and also explain certain interesting algorithms used to accomplish the
requirements specified in Chapter 3.

6.1 The Basic Algorithm

The basic formula for the Producer Consumer problem is annotated in the diagram below.

 Figure 13 – Producer/Consumer Concept

Although not depicted in the diagram above but will be mentioned further on in this chapter
the Producer and Consumer Threads interact with the main class the MainAnimationApplet at
certain intervals for an animation sequence. The animation is called from within the critical

Yes

pause

isFull()?

ACTIVATE LOCK

Store Data in Buffer
(next available free slot)

Decrement
Buffer Pointer

pause

Yes isEmpty()?

Method
enter()

No

Method
retrieve()

Retrieve Data from the
Buffer (always first slot).

Move items one slot to
the right

No

DE-ACTIVATE LOCK

ACTIVATE LOCK

DE-ACTIVATE LOCK

Consumer Flowchart Algorithm

Producer Flowchart Algorithm

Page 31 of 58

regions of each thread. When the producer inserts items into the Bounded Buffer, the thread
sleeps for a while, until the animation of the item being inserted into the buffer visually is
finished, then it awakens and continues from were it left of, likewise when the consumer
retrieves an item from the Bounded Buffer the thread sleeps until the items being removed is
visually completed and awakens continuing from were it left of.

6.1.1 The Bounded Buffer:

The Bounded Buffer is created in the BoundedBuffer Class of an array that holds a maximum
of ten slots. The user though can adjust the size used by the Producer and Consumer thread by
adjusting the value from the Control Panel on the right of the screen. The Bounded Buffer can
have either maximum of ten or a minimum of one slot for the animation to work. Even though
the size can change by the user the declared size is still ten elements. But with the use of two
Semaphores, these being full and empty declared in the BoundedBuffer class the elusion is
created that the Buffer has changed size. The default size set by the program by initialization
is of size five.

6.1.2 The Producer:

 empty.P();
 mutex.P();

 // Critical Code //

 mutex.V();
 full.V();

The first line of code empty.P() checks to see if the Buffer is Full. The statement calls the
method P() in the Semaphore class. This method will check if the value of the variable Value
defined in that class is Zero. IF the value is zero it means that the buffer is full and that the
Producer should wait for a while until its counterpart the Consumer retrieves at least one item.
If the value is not zero then it is decremented by one and the flow of control returns back to
the next statement in the algorithm. This second statement mutex.P() calls the same method in
the Semaphore class but under a different instance. This is a binary declaration called a
mutex, which can either have a value one or zero. When the value is one it means that the
Producer can have access to its Critical Section and therefore can continue to the next line of
code the critical part of the method. The critical section inserts a random value which has
been generated in the Producer thread and stores it into the shared Buffer array declared in the
Bounded Buffer Class. When this has been done the critical section of code also calls a
method in the Animation Class to create the visualization of the task on the screen. This
visualization includes an item being moved from the Producer image to the graphical Buffer
situated in the centre. In that method the Producer thread sleeps for a while the animation is
executing and awakes when it is finished. Returning back to the enter method in the Bounded
Buffer class the next piece of code increments the value of the variable Value in the
Semaphore class, thereby releasing the lock and then notifying the other thread, the Consumer
that it is permitted to proceed to its own Critical Section.

Page 32 of 58

6.1.3 The Consumer:

full.P();
mutex.P();

// Critical Code //

mutex.V();
empty.V();

On the other hand the consumer’s code is slightly different in its sequence. The first line of
code checks to see if the Bounded Buffer is empty, by calling the method P() in the
Semaphore class. IF the value of the variable Value is zero, it means that the Bounded Buffer
is empty and therefore the Consumer must wait until the Producer enters at least one item for
the Consumer to continue to the next line of code. If the value of Value is not zero, the
consumer decrements that value and return back to the retrieve method defined in the
Bounded Buffer class, whereby it executes the mutex() line. As mentioned in the Producer
section, the mutex acts as a Binary switch. When equal to zero the consumer must wait until
the Producer releases the lock. If not equal to zero the consumer is than free to proceed to the
Critical Section which is to retrieve the value at location zero in the buffer, since the Data
Structure is FIFO (the first item to enter is the first to be removed), then to call the method in
the Animation class simulate the visualization of the item being removed from the buffer and
entering the Consumer class. As with the Producer, the Consumer thread as well sleeps for
some time while the animation is executing and awakes when it is finished. After this has
been achieved the Consumer must release the lock by executing the mutex.V() which will
increment the Value from zero to one and thereby allowing the Producer to proceed if it is its
turn by the scheduler to execute its Critical Section of code. The next line of code empty.P()
increments the value by one, to indicate that the buffer is
now one less item.

One of the requirements listed in chapter 3 stated that the package should highlight
graphically the important steps of code being executed by each process. This graphical
representation as stated in the design in chapter 5 would be placed on the right side of the
JApplet in the area of the Control Panel.

To accomplish this task extra code had to be added in the Bounded Buffer Class in the
methods:

• Public void enter(int Item)
• Public int retrieve()

to allow for this Real Time Code display. The extra code is depicted on the diagrams in the
next two pages in BOLD format to distinguish it from the previous code which has been
already explained in previous pages. To accomplish this, all the code that involved calling the
Main Animation applet and any other conditional statements had to be written in between
locking mechanisms to stop the other process in this case the consumer from intervening.
Five steps had to be shown for each process. In the case of the producer:

empty.P()
mutex.P()
CRITICAL SECTION

Page 33 of 58

Mutex.V()
Full.V()

Therefore an extra two Locking and Unlocking mechanisms had to be inserted.

6.2 Amendments to the Producer Algorithm:

Mutex.P() // Lock
// communicate with the Animation Applet and highlight the empty.P() code
// Let the producer thread sleep for a while.

Mutex.P()

full.V()

Mutex.V()

Critical Code

Empty.P()

Mutex.V() //Unlock

Empty.P() // execute the Semaphore

Mutex.P() // Lock
// communicate with the Animation Applet and highlight the mutex.P() code
// Let the producer thread sleep for a while.

Mutex.P()

full.V()

Mutex.V()

Critical Code

Empty.P()

Mutex.V() // Unlock

Mutex.P() // Lock

//communicate with the Animation Applet and highlight the CRITICAL SECTION
code

Page 34 of 58

Mutex.P()

full.V()

Mutex.V()

Critical Code

Empty.P()

// Let the producer thread sleep until the animated item leaving the consumer reaches
the
// bounded buffer, enter the value of the item in the array
// communicate with the Animation Applet and highlight the mutex.V() code

Mutex.P()

full.V()

Mutex.V()

Critical Code

Empty.P()

Mutex.V() // Unlock

Mutex.P() // Lock
// communicate with the Animation Applet and highlight the full.P() code
// Let the producer thread sleep for a while.

Mutex.P()

full.V()

Mutex.V()

Critical Code

Empty.P()Mutex.V() // Unlock

Full.P() // execute the Semaphore

The next page displays the diagrammatic illustration presented in terms of code. The added
code is in Bold.

Page 35 of 58

public void enter(int item)

 // First Section of Thread
 //**
 mutex.P();
 if (theMainAnimationApplet.theAnimationMustTerminateAsSoonAsPossible==false)
 {
 theMainAnimationApplet.getTheThreadsCodeLocationAndDisplayIt(3,0);
 if (in==theValueSize)
 {
 if (theMainAnimationApplet.displayTheConsumerThread==false)
 {
 //Producer says DEADLOCK!!!!");
 theMainAnimationApplet.whichMessageToDisplay=2;
 theMainAnimationApplet.repaint();
 }
 }
 }
 mutex.V();

 empty.P();
 theMainAnimationApplet.whichMessageToDisplay=0;

 // Second Section of Thread
 mutex.P();
 if (theMainAnimationApplet.theAnimationMustTerminateAsSoonAsPossible==false)
 {
 theMainAnimationApplet.getTheThreadsCodeLocationAndDisplayIt(4,0);
 }
 mutex.V();

 // Third Section of Thread: CRITICAL SECTION
 mutex.P();
 if (theMainAnimationApplet.theAnimationMustTerminateAsSoonAsPossible==false)
 {
 theMainAnimationApplet.getTheThreadsCodeLocationAndDisplayIt(5,0);
 buffer[in]=item;
 in++;
 theMainAnimationApplet.getTheThreadsCodeLocationAndAnimateIt(1,item);
 theMainAnimationApplet.getTheThreadsCodeLocationAndDisplayIt(6,0);
 }
 mutex.V();

 // Fourth Section of Thread
 mutex.P();
 if (theMainAnimationApplet.theAnimationMustTerminateAsSoonAsPossible==false)
 {
 theProducerSection=0;
 theMainAnimationApplet.getTheThreadsCodeLocationAndDisplayIt(7,0);
 }
 mutex.V();
 full.V();

}

Code Sample 2 – Amended Producer Code

Page 36 of 58

Java uses the synchronized keyword to indicate that only one thread at a time can be
executing in this or any other synchronized method of the object representing the monitor.
The Java language and runtime system support thread synchronization through the use of
monitors. In general, a monitor is associated with a specific data item (a condition variable)
and functions as a lock on that data. When a thread holds the monitor for some data item,
other threads are locked out and cannot inspect or modify the data. The code segments within
a program that access the same data from within separate, concurrent threads are known as
critical sections. In the Java language, critical sections are marked with the synchronized
keyword. Generally, critical sections in Java programs are methods. Smaller code segments
can be marked as synchronized also, but this violates object-oriented paradigms and leads to
confusing code that is difficult to debug and maintain. It is best to use synchronized only at
the method level. The Java runtime system allows a thread to re-acquire a monitor that it
already holds because Java monitors are re-entrant. Re-entrant monitors are important
because they eliminate the possibility of a single thread deadlocking itself on a monitor that it
already holds.

Consider the class in the diagram below.

class Reentrant
{
 public synchronized void method1()
 {
 method2();
 System.out.println("This is method1()");
 }

 public synchronized void method2()
 {
 System.out.println("This is method2()");
 }
}

Code Sample 3 – Synchronization in Java

Re-entrant contains two synchronized methods: method1() and method2(). The first
synchronized method, method1(), calls the other synchronized method, method2().

When control enters method method1 the current thread acquires the monitor for the Re-
entrant object, method1() calls method2() and because method2() is also synchronized the
thread attempts to acquire the same monitor again. Because Java supports re-entrant monitors,
this works correctly. The current thread can acquire the Re-entrant object's monitor again and
both method1() and method2() execute correctly.

A thread can call wait() to block and leave the monitor until a notify() or notifyAll() places
the thread back in the ready queue to resume execution inside the monitor when scheduled. A
thread that has been sent a signal is not guaranteed to be the next thread executing inside the
monitor compared to one that is blocked on a call to one of the monitor's synchronized
methods. Also, it is not guaranteed that the thread that has been waiting the longest is the one
woken up with a notify(); an arbitrary thead is chosen by the JVM. When a notifyAll() is

Page 37 of 58

called to move all waiting threads back into the ready queue, the first thread to get back into
the monitor is not necessarily the one that has been waiting the longest. Therefore Java
monitors are technically called signal-and-continue.

Below is a detailed analysis of what exactly each statement does when it is executed by the
Java JVM [15].

Wait

A wait invocation results in the following actions:

• If the current thread has been interrupted, then the method exits immediately,
throwing an InterruptedException. Otherwise, the current thread is blocked.

• The JVM places the thread in the internal and otherwise inaccessible wait set
associated with the target object.

• The synchronization lock for the target object is released, but all other locks
held by the thread are retained. A full release is obtained even if the lock is
re-entrantly held due to nested synchronized calls on the target object. Upon
later resumption, the lock status is fully restored.

Notify
A notify invocation results in the following actions:

• If one exists, an arbitrarily chosen thread, for example the Producer, is
removed by the JVM from the internal wait set associated with the target
object. There is no guarantee about which waiting thread will be selected
when the wait set contains more than one thread. The Producer must re-
obtain the synchronization lock for the target object, which will always cause
it to block at least until the thread calling notify releases the lock. It will
continue to block if some other thread obtains the lock first.

• The Producer is then resumed from the point of its wait.

NotifyAll

A notifyAll works in the same way as notify except the steps for all threads in the
wait set for the object. However, because they must acquire the lock, threads continue
one at a time.

Interrupt

If Thread.interrupt is invoked for a thread suspended in a wait, the same notify
mechanics apply, except that after re-acquiring the lock, the method throws an
InterruptedException and the thread's interruption status is set to false. If an interrupt
and a notify occur at about the same time, there is no guarantee about which action
has precedence, so either result is possible.

The sequence of the animation depends on the variable theCorrectAnimationSequence
defined in the MainAnimationApplet class which is equated in the method
getTheThreadsCodeLocationAndAnimateIt() with the value passed in by enter() method in
the BoundedBuffer Class in the critical section.

Page 38 of 58

When the Producer is executing, the value of the theCorrectAnimationSequence can be either
1 or 2. The value initially is 1, this means the Item is from the Producer and heading toward
the Bounded Buffer. At this point the Item is moving in the form of the formula y=x^3. In the
region of values (-100<X<=0) (-100<Y<0). When it reaches the end of the buffer the value
changes to 2 and the movement of the Item moves horizontally for values in the range -
100>X<100 while y remains constant. This range adjusts accordingly depending on how
many items are stored in the memory slots. Each time an item is inserted the range decreases
on the right side. The table below depicts the range of values when the buffer slots get filled.

Item Range Difference

First -100<X<100 0
Second -100<X<80 20
Third -100<X<60 40
Fourth -100<X<40 60
Fifth -100<X<20 80
Sixth -100<X<0 100
Seventh -100<X<-20 120
Eighth -100<X<-40 140
Ninth -100<X<-60 160
Tenth -100<X<-80 180
 Table 1 – Item range coordinates relative to the Window.

As stated in the above table the regions are checked inside the timer method called
timerPerformer placed in the MainAnimationApplet. On the other hand the Consumer equates
the values 3 and 4 in the retrieve() method. The number 3 represents the item moving away
from the buffer toward the consumer while the value 4 moves the remaining items in the
buffer one slot forward since the item at the beginning was already removed. The range then
adjusts accordingly, so when the producer inserts a new value it gets positioned in the correct
location, the next available slot. The code that does this is show in the next page.

Page 39 of 58

public void whichAnimationSequence(Graphics g)
{
 Graphics2D gg = (Graphics2D) g;

 if (theCorrectAnimationSequence==1)
 {
 theItemCoordinateY = ((Math.pow(theItemCoordinateX,3))*0.00009);
 theItemCoordinateX = (theItemCoordinateX+(theRequestedSpeed));
 theItemCoordinateY = (theItemCoordinateY * (-1));
 }

 if (theCorrectAnimationSequence==2)
 {
 theItemCoordinateX = theItemCoordinateX+(theRequestedSpeed);
 }

 if (theCorrectAnimationSequence==3)
 {
 theItemCoordinateW = ((Math.pow(theItemCoordinateQ,3))*0.00009);
 theItemCoordinateQ = (theItemCoordinateQ+(theRequestedSpeed));
 theItemCoordinateW = (theItemCoordinateW * (-1));
 theItemCoordinateX = theItemCoordinateQ+182;
 theItemCoordinateY = theItemCoordinateW;
 }

 if (theItemCoordinateX!=-100 && theItemCoordinateX!=-100)
 {
 buf2D.setColor(Color.red);
 buf2D.fill(new Rectangle2D.Double(theItemCoordinateX-
110,theItemCoordinateY,20,20));
 buf2D.setColor(Color.yellow);
 buf2D.draw(new Rectangle2D.Double(theItemCoordinateX-
110,theItemCoordinateY,20,20));
 buf2D.setFont(new Font("Arial", Font.PLAIN, 14));
 buf2D.drawString(""+theCorrectItemNo,(int)theItemCoordinateX-
103,(int)theItemCoordinateY+15);
 }

 }

Code Sample 4 – The Animation Sequence

Producer and Consumer Code was further amended to allow for termination when the STOP
button is pressed. To accomplish this it was noted that a thread in our case the executing
producer and consumer should arrange for their own death by having a run method that
terminates naturally.

Page 40 of 58

public void run()

{

 while(loopFOREVER)

 {
 if (loopFOREVER!=false)
 {
 createRandomNumber();
 theBoundedBuffer.enter(randomNumber);
 }
 }
}

 Code Sample 5 – infinite thread loop

The above code runs indefinitely, although correct does not take into account the possibility
of allowing the user to terminate. Therefore code must be added to take into account the
ability for the user to stop the processes by activating the STOP button with the mouse.

“Stopping a thread with Thread.stop causes it to unlock all of the monitors that it has locked
(as a natural consequence of the unchecked ThreadDeath exception propagating up the stack).
If any of the objects previously protected by these monitors were in an inconsistent state, the
damaged objects become visible to other threads, potentially resulting in arbitrary behavior.
Many uses of stop should be replaced by code that simply modifies some variable to indicate
that the target thread should stop running. The target thread should check this variable
regularly, and return from its run method in an orderly fashion if the variable indicates that it
is to stop running. If the target thread waits for long periods (on a condition variable, for
example), the interrupt method should be used to interrupt the wait.” [13]

Page 41 of 58

public void run()
{

 while(loopFOREVER)
 {

 if (theMainAnimationApplet.theAnimationMustTerminateAsSoonAsPossible)
 {
 loopFOREVER=false;
 theMainAnimationApplet.mainMenu.addBoundedBuffer.setEnabled(true);
 theMainAnimationApplet.mainMenu.changeSize.setEnabled(true);
 }

 if (loopFOREVER!=false)
 {
 createRandomNumber();
 theBoundedBuffer.enter(randomNumber);
 }

 if (theMainAnimationApplet.theAnimationMustTerminateAsSoonAsPossible)
 {
 loopFOREVER=false;
 theMainAnimationApplet.mainMenu.addBoundedBuffer.setEnabled(true);
 theMainAnimationApplet.mainMenu.changeSize.setEnabled(true);

 }

 }

}

Code Sample 6 – The Thread Termination Technique

The amended code above, checks before any locks take place and after all the locks are
released, therefore there is no possibility of inconsistencies in the values in the buffer. The
variable theAnimationMustTerminateAsSoonAsPossible of type Boolean is defined in the
class MainAnimationApplet and is adjusted to TRUE when the STOP button is pressed and
back to FALSE when both threads terminate. It must be noted that when the STOP key is
pressed any processes (either Producer or Consumer are in the CRITICAL REGION the
termination would take place after this region is finished. All locks and unlocks remaining
would take place naturally, but evidently the animation would be skipped since there would
be conditional statements checking if the STOP button was activated.

The code in the Bounded Buffer was further extended in terms of code to deal with the REAL
TIME issue that would allow the USER of the program to add/remove Producer/Consumer
while the animation is in motion. An extra semaphore called deactivate of type binary was
declared. In effect when the user clicked the area bounded by either the Producer or
Consumer this would set a variable theProducerMustWAIT or theConsumerMustWait to
TRUE if and only if the one clicked upon is not in its CRITICAL REGION in the case where
variables producerHasPermissionToExit or consumerHasPermissionToExit are TRUE.

Page 42 of 58

public void enter(int item)
{
 producerHasPermissionToExit=true;
 deActivate.pZ(0);
 // First Section of Thread
 mutex.P();
 if (theMainAnimationApplet.theAnimationMustTerminateAsSoonAsPossible==false)
 {
 // Some code omiited, due to space limitations
 }
 mutex.V();
 empty.P();
 theMainAnimationApplet.whichMessageToDisplay=0;

 producerHasPermissionToExit=true;
 deActivate.pZ(1);
 // Second Section of Thread
 mutex.P();
 if (theMainAnimationApplet.theAnimationMustTerminateAsSoonAsPossible==false)
 {
 theMainAnimationApplet.getTheThreadsCodeLocationAndDisplayIt(4,0);
 }
 mutex.V();

 producerHasPermissionToExit=true;
 deActivate.pZ(1);
 producerHasPermissionToExit=false;
 // Third Section of Thread: CRITICAL SECTION
 mutex.P();
 if (theMainAnimationApplet.theAnimationMustTerminateAsSoonAsPossible==false)
 {
 // Some code omiited, due to space limitations
 }
 mutex.V();

 producerHasPermissionToExit=true;
 deActivate.pZ(0);
 // Fourth Section of Thread
 mutex.P();
 if (theMainAnimationApplet.theAnimationMustTerminateAsSoonAsPossible==false)
 {
 // Some code omiited, due to space limitations
 }
 mutex.V();
 full.V();

 producerHasPermissionToExit=true;
 deActivate.pZ(0);
 }

Code Sample 7 – The Thread Activation, De – Activation Technique

Page 43 of 58

Empty.P()

Highlight
Empty.P() Wait until at least

one empty slot is
available

Highlight
Mutex.P()

Mutex.P()

Wait until
Consumer thread

releases lock

Entering CRITICAL SECTION (Lock Activated)

Wait until user
re-activates the
producer thread

Terminate Animation
immediately?

yes

no
Show GRAPHICAL Animation

Sequence and MANUALLY insert
random number into buffer array

Skip step
and escape

Critical
Section

Exiting CRITICAL SECTION (Lock Released)

Mutex.V()

Highlight
Mutex.V()

Highlight
Full.V()

Full.P()

Wait until user
re-activates the

producer thread

Producer Flowchart Algorithm

Figure 14 – Final Implemented Producer Algorithm

Page 44 of 58

Summarizing, the main risk was that of time. Time was a major constraint and therefore
needed to be contained. To do this the incremental approach was suitable in that it allowed
the author to explore certain design criteria to examine the feasibility and suitability of each
of these designs and to make the appropriate decisions whether to face the risk associated
with each of them. In the case of the first design it seemed logical to move away from it, since
it was forecasted that it could lead to more problems that of Applet restrictions in web
browsers. There seemed to be an easier way to go about the project and it seemed that the
second design would avoid obstacles such as those with the first one. 100% Java would allow
for portability on any platform and the guaranteed ability to run under any browser. This
turned out to be false, problems did arise but fortunately solutions were found considering
that a lot of time had been lost at the beginning. The solutions involved a few designs in Java,
those of single applet and multi applet. The final and successful one, was the variation of the
single applet.

Page 45 of 58

Chapter 7 - Testing

The purpose of this chapter is to describe the strategy used to produce and carry out test cases
which would be used to see if the requirements outlined in Chapter 3 were fulfilled
accurately.

Most of the testing was done during the implementation. This led to choosing the most suited
design implementation for the project in terms of time constraints. Time constraint was the
most important factor, because the project had begun at a very late stage.

Testing a software component is basically done to resolve the following issues [10].

• Check whether the component meets its specification and fulfils its functional
requirements.

• Check whether the correct and complete structural and interaction requirements,
specified before the development of the component, are reflected in the implemented
software system.

Except for small programs, systems should not be tested as a single unit. Large systems are
built out of sub-systems, which are built out of modules that are composed of procedures and
functions. The testing process should therefore proceed in stages where testing is carried out
incrementally in conjunction with system implementation. Black-box and white-box are test
design methods.

• Black-box test design treats the system as a "black-box", so it doesn't explicitly use
knowledge of the internal structure. Black-box test design is usually described as
focusing on testing functional requirements.

• White-box test design allows one to peek inside the "box", and it focuses specifically
on using internal knowledge of the software to guide the selection of test data.

7.1 Types of Testing Levels:

• Unit testing: Unit testing is Code oriented with Individual components tested to
ensure that they operate correctly and therefore each component is tested
independently, without other system components.

• Module testing: A module is a collection of dependent components such as an object

class, an abstract data type or some looser collection of procedures and functions. A
module encapsulates related components so it can be tested without other system
modules.

• Sub-system testing: Also called Integration testing is more design oriented which

involves testing collections of modules, which have been integrated into sub-systems.
Sub-systems may be independently designed and implemented. The most common
problems, which arise in large software systems, are sub-systems interface
mismatches. The sub-system test process should therefore concentrate on the
detection of interface errors by rigorously exercising these interfaces.

Page 46 of 58

• System testing: The sub-systems are integrated to make up the entire system. The
testing process is concerned with finding errors that result from unanticipated
interactions between sub-systems and system components. It is also concerned with
validating that the system meets its functional and non-functional requirements.

• Acceptance testing: This is the final stage in the testing process before the system is

accepted for operational use. The system is tested with data supplied by the system
client rather than simulated test data. Acceptance testing may reveal errors and
omissions in the systems requirements definition because real data exercises the
system in different ways from the test data. Acceptance testing may also reveal
requirement problems where the system facilities do not really meet the user’s needs
(functional) or the system performance (non-functional) is unacceptable.

Acceptance testing is sometimes called alpha testing. Bespoke systems are developed for a
single client. The alpha testing process continues until the system developer and the client
agrees that the delivered system is an acceptable implementation of the system requirements.
When a system is to be marketed as a software product, a testing process called beta testing is
often used. Beta testing involves delivering a system to a number of potential customers who
agree to use that system. They report problems to the system developers. This exposes the
product to real use and detects errors that may not have been anticipated by the system
builders. After this feedback, the system is modified and either released fur further beta
testing.

7.2 Testing Techniques

There are many techniques that can be used to test software. Some are better than others, and
some can be used in conjunction with others to get better test coverage. Some common testing
techniques [10]:

• Manual testing - Tests are done by a human with test data that may be predetermined
but may also be determined per test. In some cases, manual testing could be
characterized as "banging away" at the software.

• Automated Testing - Tests can be run by a tool or an unattended process, such as a
nightly build, and they can be re-run many times. Test data is predetermined or
generated.

• Regression Testing - Tests, usually automated, are run to determine if modifications
or enhancements have negatively affected functionality that passed previous testing.

• Stress Testing - Tests are run to determine if the software can withstand an
unreasonable load with insufficient resources or extreme usage.

• Load Testing - Tests are run to determine if the software can handle a typical or
maximum load or to determine the maximum sustainable load.

• Performance Testing - Tests are run to determine actual performance as compared to
predicted performance.

The testing strategy taken mostly in this project was:

Testing began using the bottom-up technique which started with the fundamental components
and worked upwards. At the modular level and worked outward towards the integration of the
complete system in the form of a spiral. Unit testing started at the vortex of the spiral and
concentrated on each unit of the software as implemented by the source code. In Integration
testing the focus was on design and the production of the software architecture. Finally, in

Page 47 of 58

System testing, the software as a whole and other system elements were tested together.
Techniques used were manual regression and stress testing. No testing tools were used.

7.3 Program Test

7.3.1 Unit Testing

Some of the classes could not be unit tested, without certain alterations to the code, this being
that the classes extended JApplet. This was the case in the design were three Applets were
being produced and which included the Main Animation Class, the Main Menu class and the
Main Control Panel class. A separate directory was created and these files were changed to
extend JFrame, which would allow the use of the main() method which could be used to test
the program at the command prompt.

Only certain classes could be unit tested.

• Bounded Buffer
• MainAnimationApplet
• MainMenu
• ControlPanel

Bounded Buffer did not need any alterations to the code, as it did not extend anything.

• Boundary conditions were tested.
• All error handling paths were tested.

The main method would initialize the buffer, and produce some values. This included more
values than the buffer could hold to see if an error message was created. Then values were
removed.

Error messages included:

• Indicating that the Buffer is full and that the Consumer should be added
for the animation can continue.

• Indicating that the Buffer is empty and that the Producer should be
added for the animation to continue.

• Indicating that no buffer exists.

MainAnimationApplet had to be changed from JApplet to JFrame. Testing required to,
check if items graphically could simulate the movement of the item.

 Producer to Bounded Buffer
 Bounded Buffer to Consumer

This was the trickiest part of the testing. The class was tested under two microprocessors that
of Pentium III and Pentium IV and the necessary adjustments were made in the timing
method.

At first the timing was based on a variable being incremented inside the timerPerformer
method. When the timer was between a certain range of number a certain animation sequence
would take place. I.e the simulated movement of the item leaving the Producer and heading
towards the bounded Buffer. When the timercount surpassed this value another sequence
would take place. This worked fine on an identical CPU or with the graphics repainted

Page 48 of 58

staying the same. On a different CPU the timings would not be synchronized with the
sequence.

timerPerformer = new ActionListener()
{
 TimerCount++;

 if (theTimerCount<55)
 {
 if (theItemCoordinateY>0 || theItemCoordinateY==-100)
 {
 theCorrectAnimationSequence=1;
 repaint();
 }

 else
 theTimerCount=55;
 }
 }

Code Sample 8 – The original timer method

The incremented value was then removed and in its place the x and y coordinates where used
to check if the item was in the correct range and if so choose the appropriate sequence.

timerPerformer = new ActionListener()
 {
 public void actionPerformed(ActionEvent evt)
 {

 if (theCorrectAnimationSequence==1 || theCorrectAnimationSequence==2)
 {
 if (theItemCoordinateY>0 || theItemCoordinateY==-100)
 {

 theCorrectAnimationSequence=1;
 repaint();
 }
 }
 }
}

Code Sample 9 – The amended Timer Method

The other classes:
• Producer
• Consumer
• Semaphore

Page 49 of 58

These needed to be combined with one or more classes. Producer and Consumer needed to
call bounded Buffer class which in turn needed to call Semaphore class.

7.3.2 Integration (Sub-System) Testing

First test:

Bounded Buffer Class
Semaphore Class

Second test:

Bounded Buffer Class
Producer Class
Consumer Class
Semaphore Class

Third test:

Bounded Buffer Class
Producer Class
Consumer Class
Semaphore Class
MainAnimationApplet Class

7.3.3 System Testing

1. Different processor speeds were tested. Pentium IV 1.6GHz and Pentium IIII
866MHz.

2. Varied levels of background activity were added .The processor was tied up with
competing, irrelevant background tasks to check for effects on races and interrupt
handling.

3. Error messages.

7.3.4 Regression Testing

Threading issues

On Windows NT constantly using the ‘While’ condition produced unpredicted results with
the sequence of producer and consumer turns. This resulted in the producer and consumer
activating one after the other. Therefore priorities settings, had no real effect as in Solaris 2.
Researching about this problem lead to the replacement of the While condition with the use of
Thread.sleep() which seemed to be cross platform solution.

Page 50 of 58

Possible causes: Thread.yield(), ‘While’ statements leave the VM hogging as much of the
CPU time as they can get. Most of these problems are related to bugs in the various VMs,
whose intensive revision has produced evolving levels of functionality and stability.

Graphics Adjustments

Difference in user interface was experienced on the two testing platforms. The GUI did not
come out looking as intended. When using a JTextField with a certain Font size on Windows,
this did not produce the same results under Solaris. A number of tweaks needed to be done to
resolve the problem. Increasing the size of the JTextField and Font used solved the issue.

Possible causes: Every VM on every platform has its own AWT bugs and display glitches,
and these bugs change as the VM’s are revised. Most of these need working around.

7.3.5 Stress testing

An interesting problem experienced and resolved, was the ability to allow the user to
add/remove a Producer and/or Consumer in REAL TIME provided that depending which one
was chosen to be removed was not in its CRITICAL REGION. The implementation at first
instance worked fine until Stress Testing. More specifically when the USER continually
clicked on either process constantly the program would get confused, leading the buffer to
produce abnormal results as well as the animation to freeze.

The cause in this was [12]:

• The repaint() method is asynchronous. Every time the mouse was clicked the paint
request would be send to the queue of the paint dispatching thread. If multiple calls to
repaint() occur on a component before the initial repaint request is processed, the
multiple requests may be collapsed into a single call to update(). The algorithm for
determining when multiple requests should be collapsed is implementation-
dependent.

The solution was to count the number of clicks. Using the getClickCount() this would check
to see if the number of clicks did not exceed 1 click. If these exceeded 1 then they would be
ignored. Therefore repaint would only be called once.

7.4 Test Cases

Test cases were created, executed. Below is a list of them with their corresponding results.

Animation Panel TEST
Req. No Pass/Fail Comments

1 Can Producer Image be

added/removed while
animation is NOT in
operation

PASS

In bottom left
corner of the
Animation
Panel

Page 51 of 58

2 Can Consumer Image be
added/removed while
animation is NOT in
operation

PASS

In top right
corner of the
Animation
Panel

3 Can Buffer Image be
added/removed while
animation is NOT in
operation

PASS

Centre of the
Animation Panel

4 Can Producer Image be
removed while animation
IS in operation and NOT in
its CRITICAL SECTION

PASS

Producer can be
added/removed
in REAL TIME
except in
CRITICAL
SECTION

5 Can Consumer Image be
removed while animation
IS in operation and NOT in
its CRITICAL SECTION

PASS

Consumer can be
added/removed
in REAL TIME
except in
CRITICAL
SECTION

Table 2 – Animation Panel Test Case

Menu System TESTING

Req. No Pass/Fail Comments

 Producer Menu Item. Tick

activates /deactivates when
user chooses item. When
animation IS/NOT in
progress

PASS

Working
Correctly

 Consumer Menu Item. Tick
activates /deactivates when
user chooses item.
When animation IS/NOT in
progress

PASS

Working
Correctly

 Buffer Menu Item. Tick
activates /deactivates when
user chooses item.
When animation is NOT in
progress

PASS

Working
Correctly

 USER cannot activate
BUFFER menu item while
animation is in
Progress

PASS

Buffer menu
item is not
accessible while
animation is in
motion

 User can change the speed
of the animation at all times

PASS

Page 52 of 58

 User can change the size of
the buffer while animation is
NOT progress

PASS

Working
Correctly

 USER cannot change the
size of the BUFFER while
animation is in progress

PASS

Buffer SIZE
menu item is not
accessible while
animation is in
motion

 Table 3 – Main Menu Test case

Button Panel TESTING

Req. No Pass/Fail Comments

 START Button is

accessible when
animation is NOT in
operation

PASS

Only if there is a
Buffer on the
screen.

 START Button is NOT
accessible when
animation is in
operation

PASS

The button is not
enabled.

 STOP Button is NOT
accessible when
animation is NOT in
operation

PASS

The button is not
accessible if the
animation has
not been started.

 STOP Button is
accessible when
animation is in
operation

PASS

The button is
accessible only
when the
animation is
active

RESET BUTTON

N/A

Was not
implemented.
The process of
RESETTING
was automated
for the USERS
convenience.
SEE Design
(Chapter 5)

 Table 4 – Main Buttons Test Case

Control Panel TESTING

Req. No Pass/Fail Comments

 Producer Priority
PASS

Works as
predicted under
Solaris 2 but not
so in Windows

 Consumer Works as

Page 53 of 58

Priority PASS predicted under
Solaris 2 but not
so in Windows.
Its Operating
System related
and not software.

 Producers
Code steps.

 PASS Work correctly

 Consumers Code
steps

 PASS Work correctly

 Table 5 – Control Panel Test Case

Page 54 of 58

 Chapter 8 – Critical Evaluation & Conclusions

The purpose of the chapter is to outline the positive and negative aspects of the project that
occurred during the process of the development. An evaluation of the final product is done to
see if the requirements were fulfilled as planned.

The original requirements as outlined in chapter 3 were not completely fulfilled. The main
requirement which was not implemented was that of the UNIX POSIX standards which
would require the use of C as the main language for accomplishing the task. The reason being
as explained in Chapter 5 was due to interaction problems of the Java GUI with the C
program. The assumption given to this problem was that it was thread related. Indeed the
theory given, ended up being plausible during the development of the 100% Java design.
During the design, implementation and testing stages the author realised that Java threading is
not consistent on every platform as it claims to be. In this case SOLARIS 2 handles threads
differently than Windows NT. That explained why the problem did not exist during testing of
the Java & C interaction in the Windows operating system as outlined in Chapter 5. A
plausible solution would have been to create the GUI on a separate thread and the C calls on
another one.

The main reason for going on to the second design was that it was claimed that Java was
platform independent and therefore would be ideal for using it to run on both operating
systems on campus without any alterations in the code. This would then fulfil the second set
of amended requirements. This turned out to be false. Problems arose during the
development.

• Conditional “while” loops work differently on both operating systems in terms of
threading.

The GUI had different outputs on the two operating systems. Fonts which displayed correctly
in a JTextfield in Windows did not output the same on SOLARIS 2. Differences in platform
user interface mean that some of the interface may not come out looking like as intended.
Fortunately tweaking needs to be done on placements, sizes and other details in a platform
neutral way, trying out the results on each of the target platforms is necessary as the project
progresses. Layout managers should be used, not absolute locations

• Thread priorities which run correctly in SOLARIS 2 did not have the predicted
results in Windows.

• JApplets working correctly in the applet viewer did not do so in the Web Browsers.
Due to restrictions. Unfortunately the Java virtual machine often produces some
pretty unhelpful error messages. For example, "class not found" could mean almost
anything. It roughly translates as "something went wrong."

In the case of thread priorities, Java, in theory at least, provides ten levels. (If two or more
threads are both waiting to run, the one with the highest priority level will execute.) In
Solaris, which supports 231 priority levels, this is not a problem (though Solaris priorities can
be tricky to use). NT, on the other hand, has seven priority levels available, and these have to
be mapped into Java's ten. This mapping is undefined therefore many possibilities present
themselves. As an example, Java priority levels 1 and 2 might both map to NT priority level
1, and Java priority levels 8, 9, and 10 might all map to NT level 7.

Page 55 of 58

In NT, priority levels are a problem if scheduling is required to be controlled. Even more
complicated is the fact that priority levels aren't fixed. NT provides a mechanism called
priority boosting [17], which can be turned off with a C system call, but not from Java. When
priority boosting is enabled, NT boosts a thread's priority by an indeterminate amount of time
when it executes certain I/O-related system calls. In practice, this means that a thread's
priority level could be higher than originally speculated because that thread happened to
perform an I/O operation at an inappropriate time.

The point of NT’s priority boosting is to prevent threads that are doing background
processing from impacting the apparent responsiveness of UI-heavy tasks. Other operating
systems have more-sophisticated algorithms that typically lower the priority of background
processes. The disadvantage of this mechanism, particularly when implemented on a per-
thread rather than a per-process level, is that it's very difficult to use priority to determine
when a particular thread will run.

In Solaris, as is the case in all UNIX variant systems, processes have priority as well as
threads. The threads of high-priority processes can't be interrupted by the threads of low-
priority processes. Moreover, the priority level of a given process can be limited by a system
administrator so that a user process won't interrupt critical OS processes. NT does not support
this feature. An NT process is just an address space. The system schedules threads; then, if a
given thread is running under a process that isn't in memory, the process is swapped in. NT
thread priorities fall into various "priority classes," that are distributed across a continuum of
actual priorities. In essence a high-priority thread of an idle priority class process can pre-
empt a low-priority thread of a normal priority class process, but only if that process is
running in the background. NT provides no way to limit the priority class of a process. Any
thread on any process on the machine can take over control of the box at any time by boosting
its own priority class leading to no defence against this [16].

In practice, priority is virtually worthless under NT. Between NT's limited number of priority
levels and it's uncontrollable priority boosting, there's no absolutely safe way for a Java
program to use priority levels for scheduling. One workable compromise is to restrict to the
option of using Thread.MAX_PRIORITY, Thread.MIN_PRIORITY, and
Thread.NORM_PRIORITY when calling setPriority(). This restriction at least avoids the 10-
levels-mapped-to-7-levels problem. Or another option is to use the os.name system property
to detect NT, and then call a native method to turn off priority boosting, but that probably
might not work on Explorer unless Sun's VM plug-in is used because Microsoft's VM uses a
non standard native-method implementation. In any event, native methods can lead to more
problems as discussed in the Java to C, JNI implementation mentioned in Chapter 4. To
avoid the problem as much as possible, the best solution is to putt most threads at
NORM_PRIORITY and using scheduling mechanisms other than priority.

This difference in underlying thread implementation means that assumptions about thread
scheduling, priority or timing beyond what is specified in the Java API must be avoided.
Threads of equal priority will get very different treatment depending on the VM.

Java is inconsistent.

• Different version of the VM exist - For that reason, it's important to keep in mind
the possibility that some anomalous program behaviour that defies explanation
may be a bug in a particular JVM. But not all Java platform dependence results
from JVM implementation bugs. Significant platform dependence is introduced by
the JVM specification itself. When the details of a JVM are left open at the
specification level, it can produce vendor-dependent behaviour across JVMs

Page 56 of 58

• JApplet running on an applet viewer does not necessarily mean that it will run on a
web browser.

Although these problems arose during the implementation process, solutions were found by
the author, some of which are described in Chapter 6, during the testing process. Therefore it
can be concluded that the second set of requirements in Chapter 3 were successfully
implemented. If more time was available the software would have been expanded to:

Producer/Consumer Problem:

o The ability for the user to add two or more:
 Producers
 Consumers

Philosophers Problem

o A visualization interface for the Philosopher software. (Due to time constraints
this was not achieved). However, this could now be developed rapidly using the
knowledge and technique gained through implementation of the
Producer/Consumer software.

Also testing on more UNIX variants and an attempt to detect each operating system and
execute a different GUI code to produce the same look and feel, without the need for
tweaking using the code below:

String whichOS = System.getProperty("os.name");

if (whichOS.contains("UNIX"))
{
// do UNIX specific stuff here
}

if (whichOS.contains("Windows"))
{
// do Windows specific stuff here
}

Code Sample 10 – Determining the Operating System

The ability to use an external testing such as:

• JUnit.
• WINRUNNER for GUI testing.

Although the cost of writing cross-platform is much less with the Java language than in many
other languages, it's not zero. The best advice is to run unit tests on as many platforms as
possible, using as many JVM versions as possible. And, as always, avoid writing bug-prone
code. Bug-prone code and platform dependence are a deadly combination.

Page 57 of 58

Bibliography

[1] Andrew S. Tanenbaum, Albert S.WoodHull (1997) Operating Systems Design and
Implementation, Second Edition, Prentice Hall.

[2] Avi Silberschatz, Peter Galvin, Greg Gagne (2000) Applied Operating System Concepts,
First Edition, John Wiley & Sons, Inc.

[3] Fred Zlotnick (1991) The POSIX.1 Standard, A Programmer’s Guide, The
Benjamin/Cummings Publishing Company, Inc. California, USA

[4] Donald A. Lewine (1991) POSIX Programmer’s Guide, O’Reilly & Associates, Inc,
California, USA

[5] Milan Milenkovic (1992) Operating Systems Concepts & Design, McGraw-Hill
International Editions, Second Edition, USA

[6] Ida M.Flynn/Ann Mclver McHoes (2001) Understanding Operating Systems, Bill
Stenquist, Third Edition, USA

[7] Biel School of Engineering, An Incremental Software Development Process,
 http://www.hta-bi.bfh.ch/~due/se1/script/generated/sdp.fm.html

[8] Multithreading Models, Sun Microsystems Inc,
 http://docs.sun.com/db/doc/806-3461/6jck06gqk?a=view

[9] 1994-2004 Sun Microsystems, The Life Cycle of a Thread,
 http://java.sun.com/docs/books/tutorial/essential/threads/lifecycle.html

[10] Deb Stacey, Software Testing Techniques, University of Guelph,
 http://hebb.cis.uoguelph.ca/~dave/27320/testing/testing.html

[11] Dr. Eric Dubuis (1998-99), Software Engineering 1: A Software Design Process,
 http://www.hta-bi.bfh.ch/~due/99/c330/scripts/sdp/sdp_book.pdf

[12] Amy Fowler, Painting in AWT and Swing, Sun Microsystems Inc,
 http://java.sun.com/products/jfc/tsc/articles/painting/

[13] Threads Changes, Sun Microsystems Inc,
 http://java.sun.com/docs/books/tutorial/post1.0/preview/threads.html

[14] What Is a Thread? Sun Microsystems Inc,
 http://java.sun.com/docs/books/tutorial/essential/threads/definition.html

[15] Marcus Green, Java2 Certification Tutorial, Marcus Green Inc. 1999
 http://www.jchq.net/tutorial/07_03Tut.htm

[16] Mark Russinovich, NT vs.UNIX: Is One Substantially Better, by Penton Media Inc
 http://www.winntmag.com/Articles/ArticleID/4500/pg/2/2.html

[17] Mark Russinovich, Inside the Windows NT Scheduler, by Penton Media Inc
 http://www.winnetmag.com/Articles/ArticleID/302/pg/2/2.html

Page 58 of 58

