
Network protocols used in the automotive industry

Jon Bell1

Doc. ref. SD/TR/PRO/01
July 24, 2002

1email jpb@aber.ac.uk



SoftFMEA doc. ref. SD/TR/PRO/01 1

1 Introduction

This report describes some of the different network protocols used in the automotive
industry and then discusses similarities and differences between them.

The report is divided into three main sections. The first describes the Controller Area
Network (CAN), developed by Robert Bosch. This was identified as the most important
network system for the project. There are several other protocols being developed for
use in the industry, however, especially for “drive by wire” applications as well as earlier
protocols which might still be encountered. Some of these other protocols are described in
the second section. The third section then considers similarities and differences between
these protocols from the point of view of the project, so discusses issues of interest for
modelling and simulating the networks.

The references consulted are listed in a bibliography. Much of the investigation for this
report was done using the Web, so many of the sources are actually web-site urls rather
than published papers. In the nature of the Web it is likely that some of these sources
will become unavailable, but they have been checked during preparation of this report.
Many of the web sources have been downloaded and saved or printed, so if a reader of this
report cannot find a desired source, it might be worth getting in touch with the author.

2 Controller area Network

This section describes some of the features of the Controller Area Network of interest in
modelling networks using the protocol and also briefly discusses these features from that
point of view. It is therefore not a full description, the sources referred to should be
consulted for further information.

Controller Area Network (CAN) is a network protocol developed by Robert Bosch
GmbH for vehicle systems, but which is coming into use for linking distributed controllers,
sensors etc in other fields. Bosch have published a specification [19]. The protocol has
been adopted as a standard by the ISO, reference ISO11898. Any reference herein to “the
spec” means the Bosch specification, not the ISO one, which I have not seen (it costs!).

CAN is a CSMA/CD protocol (some sources have CSMA/CR for similar protocols)
that uses non-return to zero coding with bit stuffing. It supports speeds of up to 1Mb/s
so is an SAE class C protocol, suitable for real time control applications. There is a brief
explanation of the classes of protocols in section 3.1.

Messages are not addressed to intended recipients, but the sender’s identifier is in-
cluded, and this tells the receivers what data it contains so the receiver ignores it if it is
not interested. Messages’ identifiers give the priority of the message, so the priority of
messages is decided at the design stage.

In [19] there are two standards for CAN 2.0, imaginatively called A and B. These
differ in message format (see section 2.2), B has an extended message format, with a 29
bit identifier, as opposed to A’s 11 bit one.

In basic can (not to be confused with CAN “A”) each controller on the network is
interrupted by every message on the bus. In full CAN, the CAN devices add filtration of
the messages, and will only pass messages with specified identifiers on to its associated
controller, so a controller is only interrupted by those messages the CAN terminal passes,
that is those of interest to that controller.

The notes on CANbus in Automobile Electrical and Electronic Systems [5] draw at-
tention to the difference between having a local intelligent control module (for example,



SoftFMEA doc. ref. SD/TR/PRO/01 2

for all functions located in the driver’s door) and having the intelligence actually in the
actuators, so control is distributed, and each actuator (and each sensor) is on the bus
itself.

2.1 Network access, collision detection and resolution

Binary zero is represented by a ”dominant” state in the bus and binary one by a recessive
state, so a binary zero takes precedence over a one, so lower numbered message identifiers
have priority over higher numbered ones.

CAN is a CSMA/CD protocol. If the network is idle, any node can send a message.
If two messages are sent simultaneously, the node that sends a recessive bit, but detects a
dominant bit stops transmitting, leaving the network free for the higher priority message.
The higher priority message is not corrupted (so-called non-destructive bitwise arbitra-
tion). As this strategy resolves collisions and does not merely detect them (as is the case
with other CSMA/CD protocols, such as Ethernet), some sources describe protocols with
a similar collision strategy as “CSMA/CR”, Carrier Sense Multiple Access/Collision Res-
olution. The identifier and RTR fields (see section 2.2) are used for collision arbitration.
Therefore arbitration breaks down if two nodes can send data (as opposed to remote re-
quest) messages with the same identifier, as the clash will not be identified until later in
the message, giving rise to a bit error. Each node must send data messages with a unique
identifier. This has the side effect that if, say, all four road wheels had rotation sensors
(for ABS and traction control) they would each need their own identifier, so they would
have an order of priority. It seems to me not unreasonable to suggest that this could lead
to conflicts in designing the system, which I do not propose to discuss here as it is outside
the scope of the project.

This is supposed to guarantee message latency, but surely can only do so for messages
of high priority? Clearly this guarantees the highest priority message access to the network
once the current message transmission is complete. The second highest priority message is
guaranteed access after that, provided the top priority message source doesn’t broadcast
continuously, so this is pretty much guaranteed. Surely, however, as one moves down the
order of priority, eventually one is going to reach a point where a high priority source
might be ready to transmit again while a low priority source is still waiting, so its latency
is not guaranteed. Is this one reason why the SAE J2284-500 standard [23] is limited to 16
nodes? How well this limits message latency will inevitably depend on loading of the bus
— how heavily used does it get, typically? It seems reasonable to suppose that rotation
sensors (for wheel rotation, engine revs etc) cannot send data continually, as it takes time
to find the speed, so in practice this might limit bus load sufficiently for latency to be OK.
I have seen a reference to a paper on Guaranteeing Message Latencies on CAN, [26]. I
have not yet found a copy.

2.2 Message format

The format of the message frames is to be found in detail in the Bosch spec [19] or in
less detail in the Omegas web-site [16] and the Kvaser web-site [10]. The standard CAN
(2.0A) frame has an 11 bit identifier, while an extended CAN (2.0B) frame has a 29 bit
identifier, for compatibility with other protocols used in the US vehicle industry.

The standard identifier format allows for 2032 nodes on the network and the extended
identifier allows more, but as the extra 18 identifier bits are needed for compatibility with



SoftFMEA doc. ref. SD/TR/PRO/01 3

other protocols, their use is restricted. The SAE J2284-500 standard [23] allows for any
number of nodes between 2 and 16, inclusive, which doesn’t seem many.

A 2.0A compliant device will flag an error if presented with a 2.0B message, unless
it is ”2.0B passive”, when it will tolerate, but ignore, messages in 2.0B format. 2.0B
devices are backward compatible, and can transmit and receive messages in either format.
The “RTR” (transmission request) field which is set to 1 if the message is a request for
information follows the identifier. As such a “remote request” frame uses the identifier of
the source of the required data, this means that data takes precedence over a request for
that data, but a request for high priority data takes precedence over lower priority data.
These remote request frames are apparently rarely used. The identifier field and RTR field
are used in collision resolution.

The data field can contain from zero to eight bytes, its length being stated by a 4 bit
DLC field that immediately precedes the data field.

The data field is followed by a 15 bit cyclic redundancy check (CRC), a delimiter,
acknowledgement field and end of frame and intermission fields. After these and a set idle
time (which may be zero) another node can start transmission.

2.3 Error detection

There are 5 error detection mechanisms: -

1. Cyclic redundancy check. Each message contains a 15 bit CRC code computed by
sender and checked by receivers, who will flag any errors. More in the spec [19].

2. Frame check. At certain points in the frame the current value is predefined.

3. Acknowledgement Error Check. If the transmitter determines an error has not been
acknowledged, and ACK error is flagged.

4. Bit monitoring. A transmitter checks the network and flags a “bit error” if the
value on the bus is not that sent. This does not happen during transmission of the
identifier field, of course, as that is used for collision detection.

5. Bit stuffing. After five consecutive bits of the same value, a bit of the opposite value
is added to the frame. This avoids errors arising from poor synchronisation of the
network nodes, necessary because non return to zero encoding means there is no
change in network voltage during a succession of bits of similar value.

If an error is detected, an error frame is sent, aborting the transmission.
Error confinement (which may be unique to CAN?) provides a mechanism for distin-

guishing between temporary and permanent errors. Each node has two error counters (for
transmit and receive) which are incremented when errors are found. It is covered in more
detail in the spec [19], but briefly each receive error increments its counter by one, and
each transmit error increments its counter by 8. If either counter goes above 127 the node
concerned goes into “error passive” mode. In this mode it can still transmit and receive
messages, but is restricted in flagging errors. If a device’s transmit error counter goes
above 255, the device will go into “bus off” mode and will cease to be active. This condi-
tion might need to be modelled in simulating CANbus systems for FMEA. This seems to
imply that we must allow for the modelling of repeat errors or for modelling the network
as though the counter(s) had reached a level such that devices were going into ”bus off”
mode. A simpler approach, of course, would be simply to have “bus off” as a failure mode



SoftFMEA doc. ref. SD/TR/PRO/01 4

of the network terminal. This will allow the FMEA to test any mitigation strategy for
this failure of the network.

Error detection is thorough. Omegas’ material [16] suggests that the undetected error
probability is 10−11. Of course, detected errors will result in loss or delay to messages,
which effects might need modelling.

2.4 Bit timing and synchronisation

This is covered in the specification [19], of course, and there is an introduction to this in
the Omegas material [16]. Briefly, a bit time consists of four non-overlapping segments,
Sync-seg, Prop-seg, Phase-seg1 and Phase-seg2. An edge should lie within Sync-seg, while
Prop-seg is used to compensate for delay times in the network. It is therefore the sum of
twice the signal propagation time on the bus, the input comparator delay and the output
driver delay, so is characteristic to the network. Phase-seg1 and Phase-seg2 are used to
compensate for edge phase errors. They can be lengthened or shortened by resynchron-
isation. The sampling point is the boundary between Phase-seg1 and Phase-seg2. As
non-return to zero encoding is used, there need not be an edge during Sync-seg, but bit
stuffing ensures that there will be an edge after five edge-free Sync-segs.

There is a paper on The Configuration of the CAN bit timing [8] which describes the
bit synchronisation algorithm and parameters to be considered in calculating the CAN bit
time.

2.5 CAN in the ISO/OSI stack and higher level protocols

The scope of the CANbus protocol covers the physical and data link layers of the ISO/OSI
model. The specification [19] refers to three levels in the CANbus protocol — physical
layer, transfer layer and object layer. The physical layer is not defined in the Bosch spec,
but is typically shielded or unshielded twisted pair. Idle state is both lines at +2.5 volts.
A dominant bit reduces one line, known as CAN L, to zero, while increasing the other line
(CAN H) to +5 volts while a recessive bit is close to the idle value, with CAN L slightly
above CAN H, so is ”over written” by a dominant bit. A standard for the physical layer
of a 500 KBPS vehicle network is defined in SAE J2284-500 [23].

The transfer and object layers between them comprise all the services and functions
of the ISO/OSI data link layer. These are discussed in the specification [19].

Various higher level protocols might be added to CAN itself. Kvaser [10] has some
material on this, and Omegas [16] have some links on their web-site. Of these the Kvaser
source is perhaps the more useful. I have also seen an article on higher level protocols [6]
that gives an overview of the most important higher layer protocols, especially those used
in industrial automation.

The Can in Automation (CiA) trade organisation [4] supports various higher level
protocols: -

• CANopen

• DeviceNet

• CAL (CAN application layer)

• CAN Kingdom

• SDS (Smart Distributed System)



SoftFMEA doc. ref. SD/TR/PRO/01 5

CiA is an organisation mainly interested in using CAN for industrial automation so it
may well be that the protocols listed above are more common in that field than in the
automotive sector.

In addition to these, Kvaser list J1939 and OSEK. J1939 is an SAE standard for a
Truck and Bus Control and Communications Network that uses the CAN protocol and
includes documentation (though not explicit definitions) for each layer in the ISO/OSI
stack. There is a brief introduction to J1939 in section 3.5. OSEK is establishing standards
for interfaces between hardware, network and software in the automotive field. There is an
introduction in appendix A. In addition there is FNOS (Ford Network Operating System)
that appears to be a Ford alternative to OSEK. There is an introduction in appendix B.
Both OSEK and FNOS provide higher level protocols for use with CAN, though their
scope is broader than that. There appears to be a good deal of overlap between OSEK
and FNOS.

3 Other network protocols

This section will briefly introduce other protocols used in the automotive industry. Some
of these are old ones, which appear to be falling out of use, and others are new ones
being developed, many for so-called “drive by wire” applications. The protocols will be
described in rather less detail than was CAN above. There is also a brief section on
the SAE standards. These descriptions will be followed by a section that will discuss
differences and similarities between these protocols, from a modelling point of view.

The protocols introduced here can be divided into two general classes, CSMA ones,
such as CAN, and TDMA ones such as TTP/C. Some of the sources referred to for the
TDMA protocols use the distinction ”asynchronous” and synchronous. This means that in
the case of the TDMA protocols, all the nodes use a common notion of time, rather than
being prompted to transmit by an external event (the terms “event driven” and “time
driven” are also used). In fact CAN also uses synchronous transmission.

3.1 SAE standards

The Society of Automotive Engineers has defined three categories for in-vehicle networks:-

• Class A, low speed (less than 10Kb/s) for convenience features such as entertainment.

• Class B, medium speed (between 10 and 125Kb/s for general information transfer,
such as emission data, instrumentation.

• Class C, high speed (greater than 125Kb/s) for real-time control such as traction
control, brake by wire, etc.

CAN is class C, SAE J1850 (Ford SCP etc, see sections 3.2) is class B. It is, of course, not
inconceivable that both protocols are used for different functions in the same vehicle. SAE
standards exist for these categories. The document Digital Networks in the Automotive
Vehicle [12] also lists a Class D for speeds greater than 1Mb/s. Although no (SAE)
standards exist, such systems are apparently being referred to as “class D”.

The SAE has various standards for vehicle networks in these classes (i.e. of different
speeds). They have adopted J1850 as the standard for class A and B networks. There is
more on this standard below, section 3.2. CAN has been selected as the basis for J1939 -



SoftFMEA doc. ref. SD/TR/PRO/01 6

a class C network for truck and bus applications, described briefly in section 3.5. There
is also an SAE standard for high speed CAN (500 Kb/s), J2284-500 [23]. I have also seen
a mention of a J2411 single wire CAN. These standards (and others) can be bought from
the SAE web-site [21]. Some ISO standards are also available from this source.

3.2 SAE J1850

This is the SAE standard for Class A and Class B (slow and medium speed) networks. It
is a combination of Ford’s SCP (see below) and General Motors’ Class 2 Protocol. These
protocols differ, for example in operating at different speeds. The need for a standard was
apparently driven by a need to interface with diagnostic equipment (for emission control
testing). Fault codes have to be available through a diagnostic port through a standard
protocol — J1850 or ISO 9141. OBD-11 requires the implementation of diagnostic tools
for emission related systems.

As J1850 developed from two proprietary protocols, there are two alternative J1850
protocols, 41.6Kb/s with pulse width modulation and 10.6Kb/s with variable pulse width.
I have found a paper on the latter, Implementing the J1850 Protocol [15]. Ford SCP seems
to be the former.

J1850 (in both versions) is a CSMA/CR protocol, in which collisions are handled by
arbitration, in much the same way as CAN, so the higher priority message is not corrupted
by the collision. There is a bit on this in Intel’s Introduction to In-Vehicle Networking
[9]. In both versions the data field can be from 8 to 64 bits and both versions use a cyclic
redundancy check.

SCP (which apparently stands for Standard Corporate Protocol) is Ford’s version of
SAE J1850. The Jaguar example circuits referred to in [1] appear to use this protocol,
but it is apparently being superseded by CAN.

It is the faster version of J1850, so runs at 41.6Kb/s and uses pulse width modulation.
It uses a two wire bus, unlike the General Motors J1850 protocol, which uses a single wire.

3.3 UBP

This protocol is mentioned in Generic Network FMEA [25]. It appears to be a propri-
etary UART based protocol intended for SAE class A applications. There are various
such proprietary protocols, which are likely to be replaced by standard ones (such as
SAE J1850 or CAN) in future. Smart Engineering Tools [22] build network simulation
and analysis tools. They list several protocols under “UART” including UBP. A UART
(Universal Asynchronous Receiver / Transmitter) is an integrated circuit used for serial
communications.

One difference between UBP and other protocols is that it uses a checksum rather
than a cyclic redundancy check (CRC), so undetected errors are more likely than in SCP
or CAN. The risk is quoted as “low” in [25], rather than “extremely low”.

We have been told that Ford’s UBP is not used in the UK, as it interferes with the
Radio 4 cricket commentary!

3.4 ISO 9141

This is an alternative standard to J1850 (see section 3.2) for protocols that must interface
with a diagnostic port. While Ford’s “domestic” products use J1850 (SCP), their inter-



SoftFMEA doc. ref. SD/TR/PRO/01 7

national ones use ISO 9141. There is a protocol referred to as “Ford 9141” which appears
to be distinct from Ford’s UBP and based on ISO 9141. It is referred to in [30].

The NSI web-site [14] has an introduction (in French) to ISO-9141. These notes are
based on Google’s automatic translation. According to this site, it specifies ”the character-
istics of numerical exchange of information between the electronic control units embarked
aboard road vehicles and suitable equipment of diagnosis.” There are alternative configur-
ations of the physical layer, one or two wire. It also specifies speed (5 baud for addresses
and between 10 baud and 10 k baud for other transmissions), time intervals between key
words and data transmission, message format and so on. Whether communication is point
to point or multipoint is specified by individual manufacturers, so network access appears
not to be specified in this standard.

3.5 J1939

J1939 is a high speed (Class C) network to support real time closed loop control functions
between ECUs within a vehicle. Its documentation covers all layers in the ISO/OSI stack,
so its scope is broader than, say CAN. J1931 does not necessarily formally define all layers.
It uses CAN so network access and message format are consistent with it. The CAN 2.0B
format is used with 29 bit message identifiers. The format of these 29 bits is defined
in the standard and explained in the Kvaser tutorial, available from the Kvaser web-site
[10]. The speed of J1939 is 250 Kb/s, so it is slower than J2284. The physical medium is
intended to be shielded twisted pair. The standard can be purchased from the SAE [21].

3.6 TTP/C

TTP stands for Time Triggered Protocol. It is a deterministic protocol intended for
SAE class C applications. It was developed by the Brite Euram Project “X-by-Wire” and
ESPRIT OMI Project “TTA” at the Technical University of Vienna [24]. The specification
has been transferred to TTTech [29] since the ending of these projects. There is a TTP
group with a web-site [27] from which the specification can be ordered, for free. The
companies listed on the web-site include VW/Audi and Honeywell. TTP/C can apparently
manage higher data rates than CAN. The time triggered architecture is discussed in Bus
architectures for safety-critical embedded systems [20].

TTP is ”time triggered” as opposed to ”event triggered” so all nodes on the network
have a common concept of time, through roughly synchronised clocks. All activities are
carried out at certain points in time, decided at system design time, rather than network
activities being triggered by external events, as in a CSMA protocol such as CAN. As TTP
is a TDMA protocol, latency is deterministic. There is a bus guardian that “guarantees”
that no node can monopolise communication media outside its transmission slot, so the
network should be safe from ”babbling idiots”.

The network appears to be peer-to-peer, as each node has its own controller and bus
guardian. Therefore failure of a bus guardian will presumably only result in failure of that
node, but does that not allow the node to become a babbling idiot?

There is a lower cost version, called TTP/A, for SAE class A applications. This version
is also TDMA and is a master/slave architecture. It can be used for branching several
sensors from a single TTP/C node. As TTP/A is intended for low cost systems, a standard
UART and an 8-bit controller are sufficient for implementation.



SoftFMEA doc. ref. SD/TR/PRO/01 8

3.7 LIN

LIN is an acronym for Local Interconnect Network and is a low cost field bus network
intended to fit below CAN’s functionality (i.e. for SAE class A applications?). I have
found a paper comparing LIN with TTP/A, from the TTP forum [27], but on checking
this paper appeared no longer to be available from there. The standard is described at
[13]. The LIN consortium includes VW/Audi, Daimler-Chrysler and Motorola. Unlike
TTP its development was driven by industry, rather than by academic institutions.

It is a single master/multiple slave architecture, so no need for arbitration. Speed is
20Kbit/s so while it is considered to be most appropriate for SAE class A applications,
the speed is actually at the lower end of class B. As it is time triggered, message latency
is guaranteed. Silicon implementation is cheap, based on common UART/SCI interface
hardware. SCI stands for serial communications interface.

3.8 Volcano

Volcano might be described as ”TTP on CAN” and the Volcano web-site [31] describes
the protocol as CAN-based and deterministic. The protocol is used by Volvo on the S80
and V70 cars, and is coming into use on Volvo buses.

According to the Volcano Communications Concept [18], Volcano appears to be a
technique in which the CAN network is integrated in such a way as to guarantee the
latency of all the messages. It does this by specifying the latency and periodicity of
messages at design time. This allows the maximum latencies to be calculated, so the
system integrator (designer) can specify the network set up in such a way as to juggle
these specifications to guarantee the specified parameters, by avoiding arbitration as far
as possible. This seems to imply that the sending of network communication is time
triggered rather than event triggered, so the description ”TTP on CAN” seems a pretty
good summing up.

This apparently means that network loadings can be considerably higher than using
CAN conventionally, maybe 60% loading, whereas for latency of lower priority messages
to be contained to reasonable limits, CAN loading may need to be around 10%.

3.9 Byteflight

Byteflight is a high speed, deterministic protocol developed by BMW and several semi-
conductor manufacturers for safety-critical automotive applications. There is a web-site
on the protocol, from which the specification can be downloaded [3].

It is capable of speeds of up to 10Mbps gross, (better than 5 Mbps net) using an
optical fibre physical layer to avoid electro-mechanical interference problems, in a star
configuration. It has also been tested using a bus configuration, on twisted pair, but at
lower speeds. The protocol combines time and priority controlled bus access, but claims
collision free operation, so no arbitration loss. Latency is guaranteed for ”a certain amount
of high priority messages” and there is an analytical check for worst-case latency for high
priority messages. There is flexible bus access for low priority messages, but latency cannot
be guaranteed for these.

According to the description in [2], one node (it can be any) sends a periodic signal
that marks the beginning of a “slot”. In the current standard each slot has a duration of
250 microseconds. After transmission of the slot signal, each node starts a counter and
can send a message when the counter reaches its own number. When a transmission is



SoftFMEA doc. ref. SD/TR/PRO/01 9

made, the counters pause for the duration of the message, so no slots are missed. If there
is no message, there is a brief pause before the counters increment. Therefore there is
a number of messages that can be certain of reaching their time in each slot, so can be
sure of transmitting every 250 microseconds. Lower priority messages cannot be certain
of transmitting in a given slot (or in any slot, in principle).

3.10 FlexRay

FlexRay is a protocol that combines time triggered and event triggered messaging. It is
being developed by BMW and DaimlerChrysler with Philips and Motorola. It is capable
of a net data rate of 5Mbps (10 Mbps gross). Information on the protocol is available on
the Web [7]. The Requirements Specification can be downloaded from here. It is one of
four protocols discussed in Bus architectures for safety-critical embedded systems [20].

Not surprisingly, in view of its developers, FlexRay has a certain amount in common
with Byteflight. There is a signal indicating the beginning of a network slot, like Byte-
flight’s, but this slot is divided (at design time) into static (time triggered) and dynamic
(event triggered) portions. In the static part, each message source has its own slot, during
which the network is idle if that source does not transmit. This is followed by the dynamic
portion of the slot in which any node can transmit, using the Byteflight protocol, so it is
still free of arbitration and transmission is priority based. The example in the FlexRay
introductory presentation [22] shows the highest priorities having slots allocated in the
static (time triggered) part, and lower priority sources in the dynamic (event triggered)
part, so a source (id) has a slot in one or the other. This presumably reduces jitter for
messages allocated slots in the static portion (as compared to Byteflight) as their timing
is constant, unlike in Byteflight, where vacant slots are shortened.

3.11 TTCAN

This protocol is a session layer (from the ISO/OSI stack) extension to CANbus, currently
being standardised by the ISO, which allows CAN to be used for time triggered messages,
so increasing determinism, reliability, composability and synchronisation over CAN. The
summary here is taken from Leen and Hefferman [11].

In TTCAN a specific node (the ”time master”) transmits a reference message, indicat-
ing the start of a time cycle. The message is recognised by other nodes (by its identifier).
A time cycle is divided into a number of slots each of which can be assigned statically to
a specific node, or to a group of nodes that compete for it by CAN arbitration, though
without retransmission. Slots can also be designated as idle time to allow for expansion.
A transmission must be started early in the time slot (during the so called Tx Enable
window) so as to avoid the message over-running its allocated slot. The only time re-
transmission is allowed is when two or more arbitration slots follow consecutively, so the
message that lost arbitration can retransmit during the combined Tx Enable window of
the successive slots. A complete cycle can cover several successive transmissions of the
reference message. This message includes a cycle count value to indicate which row of the
resulting ”matrix cycle” has been reached. Each row can have its individual slots allocated
differently from the other rows.

As there is now a master node that transmits the reference message, the protocol
needs to ensure fault tolerant behaviour of the time master. If a time master fails, another
potential time master takes over. Any one of eight nodes can be potential time master.



SoftFMEA doc. ref. SD/TR/PRO/01 10

4 Comparison of the protocols

This section will discuss each common feature or difference of the various protocols in
turn. Each section will contain some discussion of modelling issues that feature raises and
a final summing up will conclude the discussion.

4.1 Broadcast messages

The most noticeable common feature of these protocols seems to be that messages are
broadcast so all receivers receive the message and can act upon it if they are interested.
This is necessary as some sensors will transmit data of interest to several systems, such as
road wheel sensor data being of interest to ABS, traction control, instrumentation (speedo-
meter) and possibly others. The only exception seems to be that some implementations of
ISO 9141 use point to point communication. This does not seem an important exception
from the point of view of the project (as these older standards appear to be being phased
out) but if we ever wanted to model telecommunications systems we might need to model
point to point communication.

Broadcast messages immediately introduce a problem in using SDL to model network
message passing, as an SDL ”signal” is sent to a specific recipient, though it may be
broadcast in the sense of being sent by all available paths, in much the way that an
Ethernet message is sent to every node on the network, but is addressed to a specific
receiver. In CAN, for example, the transmitter will not know which nodes are interested
in the message, it broadcasts it to all and sundry, similarly to a radio broadcast, the
message being identified by its source, not its recipient. An SDL signal can have its sender
identified.

Of course, in the context of a subsystem, we might be able to dodge this issue, by
simply modelling the message being sent from the subsystem’s (only) sender to its (only)
receiver, but this fails to model the protocol, and also fails to address situations where the
system has several receivers of the same message, such as separate ECUs for each lamp
cluster.

4.2 Undetected errors

According to Comparison CAN vs. Byteflight vs. TTP/C [28], CAN, Byteflight and
TTP/C all use a CRC and all have a hamming distance of 6, so the probability of an
undetected error is more or less equal in each case. I imagine that the same applies to
Volcano, being based on CAN. The probability is not equal as it will be affected by the
length of the message, there being a greater probability of six bits being corrupted in a
long message than a short one.

This makes the probability of an undetected error vanishingly small, but of course if
a fault in a sensor, say, causes it to send an incorrect reading, this will be transmitted
accurately and so will lead to incorrect behaviour. This is, of course, not a fault with the
network.

Some older protocols (such as UBP) use a checksum rather than a CRC, which makes
an undetected error less unlikely. The probability is still low and, in view of these protocols’
obsolescence the difference can probably be ignored.

Of course a detected error will lead to the message being retransmitted which will
result in a delay in its correct reception, especially if it needs to contend for network
access again (as in CAN). Late messages clearly need modelling.



SoftFMEA doc. ref. SD/TR/PRO/01 11

CAN’s error containment (see section 2.3) might result in a node being rendered in-
active (so-called “bus off” mode). This might result in a fault mitigation strategy being
invoked by the receiver. This feature should be modelled, but arguably need not be dis-
tinguished from messages being lost for any other reason (the message not transmitted or
message not received faults listed in Generic Network FMEA [25].

4.3 CSMA and TDMA

The most obvious way of grouping the various protocols is by access control. CAN is
CSMA/CD, so messages will be interrupted if they lose arbitration, while TTP/C and
Volcano are TDMA, so there will be no collisions to resolve, if the network is working
correctly.

Modelling interruptions in CAN looks to be potentially the most difficult problem to
solve in modelling these networks, as it non deterministic. It seems plausible to argue that
modelling messages coming from different concurrently running sources is impossible on
a single processor computer, as even running concurrent processes means that the models
of some sources will stop while another process has the CPU, so Java threads are not an
ideal solution. Another approach might be to model late messages statistically. This is
possible, once the source priorities are known. If the frequency with which each source
sends (or tries to send) a message is also known, then the network loading can also be
established and the statistical likelihood of an interrupt can be arrived at. Volcano uses a
similar calculation as a basis for setting the sources’ priorities and periodicities such that
collisions are avoided. Another, simple, approach would be simply to model individual
messages as arriving late, allowing the user to determine which messages are modelled as
delayed when setting up the FMEA scenario. This will result in long scenarios if it is to
be comprehensive.

Another problem that arises from modelling collisions, whether by modelling different
terminals’ behaviours or statistically, is the possibility that the configuration of the network
is not known at the time of running the simulation. It seems possible that this might arise
if a simulation of a subsystem is to be undertaken early in the design lifecycle of the
vehicle. There seems to be no useful way of avoiding this difficulty.

As the TDMA protocols are more deterministic, it seems reasonable to suppose that
they will be easier to model. Therefore it should be possible to adapt a modelling approach
that is capable of simulating a CSMA protocol for a TDMA one. The main difficulty seems
to be the need to model time in some suitable way, but if we are to model message delays,
we must model time anyway. There is a separate section on message delays, section 4.4.

On the other hand, as a TDMA protocol needs some global concept of time, they
introduce a new class of failures concerning loss of this idea, for example a TTCAN ”time
master” failing to send a time reference message. All such protocols will have some fault
tolerance in this area, but it might well be that these behaviours need modelling.

4.4 Message delays

The need to model late messages is common to all protocols though a TDMA protocol
network that is working correctly should not have any. Clearly if the specification for fre-
quencies of and acceptable waiting times for messages is unattainable, then message delays
will be apparent, but I imagine that this will be dealt with by the network specification
people, not the electrical engineers, and is capable of being modelled using specialist tools.



SoftFMEA doc. ref. SD/TR/PRO/01 12

The possibility of a fault in a network component leading to unacceptable message delays
does seem to be something we might be expected to model, however.

Lateness can only be measured either in very vague terms such as ”The fault leads to
the message arriving late, and the resulting delay in reacting to a wheel locking might lead
to an uncontrollable skid” or in terms of failing to meet the specified message frequency
and that the data is older than it should be - for example, ”the delay in message reception
meant that the time between successive messages was 60 ms instead of 50, and the trans-
mitted datum was produced 35 ms before reception, instead of 25.” Clearly this requires
a quantitative modelling of time, and sufficiently detailed knowledge of the network and
its terminals to know how much a message might be delayed by, say, being overridden on
first transmission. It might be possible to use a qualitative model of time like that used
in Statebuilder to approximate this. I imagine it might be possible to model a delay in
terms of, for example, a message taking seconds instead of milliseconds, but this seems
rather coarse grained. The idea of modelling delays also entails some linking of input to
output in the functional labelling, so the connection between, say pressing the dip switch
and the headlamps dipping is known, so the delay in achieving the required function can
be established.

4.5 Tool support

All the interesting networks appear to have tool support available. CAN has CANOE,
TTP/C can be modelled using Matlab Simulink and there appear to be tools available for
Byteflight.

It is worth noting that CANOE does not model the network, it allows a computer to
be added to a real network for monitoring and analysis. This limits its usefulness to late
in the design lifecycle when a network has been built with real hardware, distinct from
the idea of using simulation for design analysis early in the design lifecycle.

There might be some value in devising a protocol to enable a bridge to any of these tools
to be created, alongside the strand of devising our own modelling method, applicable to any
network and usable early in the design lifecycle. It seems possible that these approaches
might be useful alongside one another, as a network becomes more closely specified, then
the specialist tool might have advantages in terms of detail of simulation over a generic
approach. There seem to me to be parallels between this idea and using SABER as the
simulator in AQQA, later in the design lifecycle.

5 Conclusion

It is, I think, apparent that while CAN might be the network protocol worth most con-
sideration in SoftFMEA, there are others of sufficient importance that whatever approach
we take to modelling network components should be capable of easy adaptation for these
other protocols. The various time triggered protocols being developed with drive by wire
applications in view are good examples.

As a general point, it seems reasonable to suggest that making our modelling approach
adaptable to different protocols will tend to militate against detailed modelling of any one
protocol. The question of how much detail we should model a network and its protocol is
one which needs further consideration. There seem to be problems in actually modelling
collisions in CAN, there are difficulties modelling a truly concurrent system on a single
processor computer and the idea of modelling a succession of network messages sits a



SoftFMEA doc. ref. SD/TR/PRO/01 13

little uneasily with the idea of running a simulation until it reaches a steady state, there
arguably being no steady state in the network itself.

One plausible and simple approach, which has the benefit of adaptability to different
protocols is to treat the network at large as an invisible component with its own failure
modes. Clearly the failure modes of the network will differ according to the protocol.
This component would sit alongside the explicitly drawn network connections between
the various ECUs in the system being modelled. It seems entirely possible that such an
approach can model the generic faults listed in Generic Network FMEA [25]. This does
not remove the need for connecting input and output in functional labelling nor the need
to devise a suitable modelling of time to allow delays to be captured.

This approach will not give any guide to the probability of message delay, and treating
message delays and non-arrival as a failure mode of the network is different from the failure
modes AutoSteve currently uses as not all messages will be delayed, the failure mode will
be intermittent. The user could specify which messages are delayed, as part of the FMEA
scenario, but this will make it difficult to create a comprehensive scenario. Maybe for
purposes of FMEA simply treating all messages as being delayed is a possible approach,
especially as an event in a scenario will frequently only entail one message being sent.

This simple method does have the advantage of being appropriate for the faults listed
in Generic Network FMEA and being easily adaptable to other protocols, by merely
specifying a slightly different set of failures. There is perhaps room for discussion on any
need for a more sophisticated approach.



SoftFMEA doc. ref. SD/TR/PRO/01 14

A OSEK

The aim of the OSEK project is to develop a standard interface for the combination
of hardware, network protocols and application software for use in automotive systems.
The aim of the interfaces is, of course, abstraction away from the network and hardware,
encouraging reusability of components.

OSEK and VDX were independent projects for developing open system architectures
for automotive systems. OSEK was developed by a number of German companies, and
VDX by French ones. The French manufacturers joined OSEK in 1994, resulting in an
OSEK/VDX standard. Digital Networks in the Automotive Vehicle [12] has a section
devoted to OSEK/VDX and the OSEK/VDX people have a web-site [17].

OSEK COM specifies standard protocols and interfaces approximating to various levels
of the ISO/OSI stack. These include a Device Driver interface between the OSEK Data
Link layer and the bus hardware, standard Network Layer protocols and a standard API in
an Interaction Layer that approximates (together with the OSEK Network Management
spec) to the roles of the Transport, Session and Presentation layers in the ISO/OSI stack.
There is a specification (OSEK COM 2.2.2) available from [17]. It runs to 185 pages.
Its introduction summarises the aim of the standard as being to “agree on interfaces and
protocols for in-vehicle communication”. This is intended to cover both communication
between ECUs and within an ECU, allowing different vendors’ products to be used.

The network management layer is covered by the specification NM 2.5.1, also available
from [17]. In summary, the Network Management system “provides standardised features
which ensure the functionality of inter-networking by standardised interfaces”. Its role is
to ensure the safety and reliability of a network between ECUs.

B FNOS

According to [30] this appears to be an acronym for Ford Network Operating System. This
provides an architecture for interaction between ECUs and CAN. FNOS contains seven
layers some of which seem to fulfil similar roles to the higher layers in the ISO/OSI stack,
though the layers do differ. There is clearly some relationship between FNOS and OSEK.
They cover similar ground and OSEK standards are used in some layers of FNOS. I shall
describe each layer in one or two sentences. There is a slightly fuller description in [30].

Communication Layer Provides a (mostly) hardware independent interface between
higher layers and CAN, so it transmits and receives CAN messages, and handles
CAN message overrun and error handling as well as CAN hardware initialisation
and wake-up handling. The implementation will be based on OSEK COM 2.2.1
specification.

Transport Layer Provides a standard method of transmitting data which needs more
than one CAN message. Not used in normal communications, but required for
diagnostics, such as reporting of fault codes.

Interaction layer Separates CAN message level details from the message’s specific para-
meters (contents?). This feature handles the packaging of data to be sent into a CAN
message. The ECU simply writes and reads parameters.

Gateway Provides the capability to transfer signals from one CAN network to another.



SoftFMEA doc. ref. SD/TR/PRO/01 15

Network Management Handles network initialisation, sleep and wake-up. It also has
functions to handle network configurations. Typically only needed by networks that
require sleep/wake-up functionality. FNOS implementation of Network Management
layer will be based on OSEK NM 2.5.1.

Diagnostics (part 1) Provides a consistent method for evaluating and in some cases
responding to diagnostic requests.

Bootloader Provides a consistent method for interfacing with a device to begin program-
ming or reprogramming. This was being worked on by Ford and Volvo at the time
of release of [30].

References

[1] Jon Bell. Systems with telematic components. SoftFMEA document ref. SD/TR/02,
2002.

[2] J Berwanger, M Peller, and R Griessbach. Byteflight — a new high-performance
data bus system for safety-related applications. BMW, 2000. Available from
http://www.byteflight.com.

[3] The byteflight website is at http://www.byteflight.com.

[4] CAN in Automation has a website at http://www.can-cia.de/.

[5] Tom Denton. Automobile electrical and electronic systems. Butterworth-Heinemann,
2000.

[6] K Etschberger. CAN-based higher layer protocols and profiles. from Web at
http://www.stzp.de/papers/icc97/icc97 e.html.

[7] There is a FlexRay website at http://www.flexray-group.com/.

[8] Florian Hartwich and Armin Bassemir. The configuration of the CAN bit timing. In
6th International CAN Conference, 1999.

[9] Intel. Introduction to in-vehicle networking. Available from
http://developer.intel.com/design/auto/Autolxbk.HTM.

[10] Kvaser’s website is at http://www.kvaser.com/can/.

[11] G Leen and D Hefferman. Time-triggered controller area network. Computing and
Control Engineering Journal, 12(6):245–256, 2001.

[12] G Leen, D Hefferman, and A Dunne. Digital networks in the automotive vehicle.
Computing and Control Engineering Journal, 10(6):257–266, 1999.

[13] There is a website on LIN at http://www.lin-subbus.org/.

[14] NSI website (in French) is at http://www.nsi.fr/iso9141.html.

[15] D John Oliver. Implementing the J1850 protocol. Obtainable from
http://developer.intel.com/design/intarch/papers/j1850 wp.htm.



SoftFMEA doc. ref. SD/TR/PRO/01 16

[16] Omegas’ website was at http://www.omegas.co.uk/CAN/, but it failed on checking
these references. There are paper copies of some of their materials in the project
document store.

[17] The OSEK website is at http://www.osek-vdx.org/.

[18] A Rajnak, K Tindell, and L Casparsson. Volcano Communications Concept. Vol-
cano Communications Technologies, 1998. Available from the Volcano website,
http://www.vct.se/.

[19] Robert Bosch GmbH. CAN specification version 2.0, 1991. Bosch CAN website is at
http://www.can.bosch.com/.

[20] J Rushby. Bus architectures for safety-critical embedded systems. In EMSOFT 2001:
First workshop on embedded systems, volume 2211 of Lecture Notes in Computer
Science, pages 306–323. Springer-Verlag, 2001.

[21] The SAE url for standards is at http://www.sae.org/technicalcommittees/.

[22] Smart Engineering Tools inc. is at http://www.smtools.com/index.html.

[23] Society of Automotive Engineers. High speed CAN for vehicle applications at 500
Kbps. Document number SAE J2284/500
SAE website at http://www.sae.org.

[24] The Technical University of Vienna’s TTA project page is at
http://www.vmars.tuwien.ac.at/projects/tta/ in English.

[25] Timothy J Thomas. Generic Network FMEA. Ford Motor Company, 2001.

[26] K Tindell and A Burns. Guaranteeing message latencies in CAN. In Proceedings 1st
International CAN Conference, 1994.

[27] The TTP Group website is at http://www.ttpgroup.org/index.html.

[28] TTTech Computerthchnik AG. Comparison CAN vs Byteflight vs TTP/C.

[29] TTTech’s website is at http://www.tttech.com/.

[30] Vector CANtech. Generic statement of work core multiplex technology. Available
from http://www.vector-cantech.com/OEM/ford/fordmux.htm.

[31] The Volcano website is at http://www.vct.se/.


