Delivery Type | Delivery length / details |
---|---|
Lecture | 19 x 1 hour lectures |
Practical | 3 x 2 hour practical sessions |
Assessment Type | Assessment length / details | Proportion |
---|---|---|
Semester Assessment | Continuous assessment of practical work | 30% |
Semester Exam | 2 Hours One 2-hour theory examination. | 70% |
Supplementary Assessment | 2 Hours One 2-hour theory examination | 100% |
On completion of this module, students should be able to
1. describe the basic transmission, structure and function of genetic material
2. identify, calculate and express solutions to numerical problems in quantitative genetics
3. label and complete diagrams of genetic processes
4. recognize and identify answers to questions on practical work
The module aims to introduce students to the basic principles and concepts of Genetics. Emphasis is given to understanding, and to developing a conceptual framework based on the transmission, the structure and the function of the genetic material. Genetics is studied at different levels of organisation from the molecular, through cells and individuals, up to populations and to evolutionary changes. Eukaryote and prokaryote aspects are fully integrated into the course.
Skills Type | Skills details |
---|---|
Application of Number | Collection and scrutiny of data in terms of quality and quantity. Data manipulation and interpretation. |
Communication | The production of balanced practical reports. Listening skills for the lectures and subsequent discussion in practical classes. Effective written communication in examinations. |
Improving own Learning and Performance | Outside the formal contact hours, students will be expected to research materials, manage time and meet deadlines. The directed study elements will provide opportunity for students to explore their own learning styles and preferences and identify their needs and barriers to learning. Students will be able to review and monitor their progress and plan for improvement of personal performance. |
Information Technology | Accessing the web for information sources and using databases to find primary literature. Software packages required to produce practical reports. |
Personal Development and Career planning | Students will gain confidence in their ability to evaluate biological problems and objectively assess the quality of proposed solutions. |
Problem solving | Through the lectures students will become aware of the essential problem that faces all living organisms: how is genetic integrity maintained whilst generating sufficient genetic diversity to provide the raw material for evolutionary change. The principles of genetics are largely taught through problem solving exercises. Practical classes allow students to gain experience in designing, executing, interpreting data and writing-up assessed genetic experiments. |
Research skills | Students will research topics beyond the depth and scope of the lecture material using both directed and independent study. Information from a variety of sources will be the object of scrutiny and comment. Practical classes will allow the development of key biological research skills at an early stage of their academic careers. |
Subject Specific Skills | Derivation of genetic maps from linkage data; abstraction of genetic concepts from numerical data |
Team work | Students will work in pairs during practical sessions. They will need to discuss their experimental design and work effectively as a small team in practical classes. |
This module is at CQFW Level 4