Delivery Type | Delivery length / details |
---|---|
Practical | 2 x 2 hours |
Lecture | 22 Hours. |
Assessment Type | Assessment length / details | Proportion |
---|---|---|
Semester Assessment | 1 assignment (report on practical work) (approx 20 hours) | 30% |
Semester Exam | 2 Hours | 70% |
Supplementary Assessment | Will take the same form, under the terms of the Department's policy. | 100% |
On successful completion of this module students should be able to:
express a consolidated and extended understanding and knowledge of visualisation techniques.
compare, critically discuss and use different methods to visualise data and extract relevant information from the data set.
design and implement experiments in a scientific manner to visualise and extract relevant information from a data set.
Many processes produce and/or use data, the interpretation of which is often difficult. This includes medical applications (e.g. radiographs and MRI scans), weather analysis and prediction, planetary exploration and robotics. Virtual reality is a very trendy way of visualising some kind of data, but is not the only way.The module will introduce the subject of scientific visualisation: data acquisition, processing of the data and finally visualisation and how this can help interpreting and understanding the data. The module will concentrate on using algorithms rather than developing them, although some will be described in detail. An understanding of graphics and image manipulation will be beneficial but not required.The module will offer practical work using leading visualisation software packages.
Skills Type | Skills details |
---|---|
Communication | Written communication will be developed through the writing of a practical session report. |
Improving own Learning and Performance | Written communication will be developed through the writing of a practical session report. |
Information Technology | Students will be exposed to a new (with a rather unusual graphical interface) and fairly difficult to use software package. |
Problem solving | Thinking through and designing an experiment to visualise data from a set of available tools involves the application of problem solving skills. |
Research skills | Students will have to research some algorithms not described at length during the lectures. |
This module is at CQFW Level 6