Delivery Type | Delivery length / details |
---|---|
Lecture | 22 Hours. (22 x 1 hour lectures) |
Seminars / Tutorials | 5 Hours. (5 x 1 hour tutorials) |
Assessment Type | Assessment length / details | Proportion |
---|---|---|
Semester Assessment | Coursework Mark based on attendance at lectures and tutorials and work handed in | 20% |
Semester Exam | 2 Hours (written examination) | 80% |
Supplementary Assessment | 2 Hours (written examination) | 100% |
On completion of this module, a student should be able to:
1. identify simple loci analytically and geometrically;
2. find equations of angular bisectors and prependiculars;
3. determine lengths of tangents to a circle and whether two circles are orthogonal;
4. determine equations of coaxial circle systems;
5. identify the type of a conic from its equation;
6. determine the equations of the tangents and normals to conics;
7. use vectors to solve elementary problems in geometry;
8. express the coordinates of a general point of certain curves parametrically;
9. compute scalar and vector products of two vectors;
10. compute scalar and vector triple products of three vectors;
11. determine the vector equations of lines and planes;
12. determine the angle between two planes and the shortest distance from a point to a plane.
13. solve elementary problems in kinematics.
This module introduces some of the fundamental notions of geometry - points, lines, curves, planes and surfaces - analytically, in the language of coordinate geometry. Conics are classified in terms of their equations and geometric properties. The concepts of tangent and normal are developed.
To develop geometric intuition and the ability to view geometric problems analytically and vice versa.
This module is at CQFW Level 4