Delivery Type | Delivery length / details |
---|---|
Lecture | 22 Hours. (22 x 1 hour lectures) |
Seminars / Tutorials | 6 Hours. (6 x 1 hour example classes) |
Assessment Type | Assessment length / details | Proportion |
---|---|---|
Semester Exam | 2 Hours (written examination) | 100% |
Supplementary Assessment | 2 Hours (written examination) | 100% |
On completion of this module, a student should be able to:
1. solve certain polynomial equations of small degree;
2. obtain and use relations between the roots and coefficients of polynomials;
3. compute with trigonometric functions and use trigonometric identities;
4. evaluate matrix expressions;
5. solve a system of linear equations using the Gauss-Jordan elimination process;
6. solve a system of linear equations using matrix inversion;
7. find the eigenvalues and corresponding eigenvectors of a matrix;
8. state and use the Cayley-Hamilton theorem;
9. state and use the binomial theorem.
The purpose of this module is to present some of the basic concepts of algebra at a level suitable for applications in other areas. The syllabus includes the solution of polynomial equations, complex numbers, trigonometric functions, graphs. The binomial theorem and solution of linear equations by row reductions of matrices.
To introduce students to algebraic ideas, at a level suitable for application in subjects other than Mathematics.
This module is at CQFW Level 4