Delivery Type | Delivery length / details |
---|---|
Seminars / Tutorials | 3 Hours. (3 x 1 hour example classes) |
Lecture | 19 Hours. (19 x 1 hour lectures) |
Assessment Type | Assessment length / details | Proportion |
---|---|---|
Semester Exam | 2 Hours (written examination) | 100% |
Supplementary Assessment | 2 Hours (written examination) | 100% |
On completion of this module, a student should be able to:
1. determine the Fourier series of integrable functions of arbitrary period;
2. apply Fourier series techniques to the summation of infinite series;
3. describe the notions of continuity and differentiability for functions of several variables;
4. establish whether functions of two or more variables are continuous and differentiable;
5. determine whether infinite series are convergent by using various convergence tests;
6. describe the notion of uniform convergence of sequences of functions;
7. use the Weierstrass M-test to test the uniform convergence of infinite series of functions;
8. determine the radius of convergence of power series;
9. use standard convergence theorems concerning power series.
The study of real analysis is of paramount importance to any student who wishes to go beyond the routine manipulation of formulae to solve standard problems. The ability to think deductively and analyse complicated examples is essential to modify and extend concepts to new contexts. The module is geared to meet these needs.
In this module, the analytical techniques, developed in MA11110, will be extended to a more general setting. This module will provide the foundations of classical analysis in a concrete setting, with a special emphasis on applications.
This module is at CQFW Level 5