Delivery Type | Delivery length / details |
---|---|
Lecture | 20 x 1hour lectures |
Seminars / Tutorials | 7 x 1hour seminars |
Assessment Type | Assessment length / details | Proportion |
---|---|---|
Semester Exam | 2 Hours (written examination) | 100% |
Supplementary Assessment | 2 Hours (written examination) | 100% |
On completion of this module, a student should be able to:
1. discretize elliptic boundary value problems in an efficient way;
2. derive accurate numerical solutions of elliptic boundary value problems;
3. explain and use spectral methods and spectral element methods.
Boundary value problems, in ordinary and partial differential equations, occur naturally in science and engineering, eg clamped beam problems, slow viscous flow, and elasticity. Over the centuries many famous mathematicians have been challenged by such problems and have produced elegant classical solution methods. Today it is possible to marry some of these classical discoveries with modern computational methods, to enable the solution of contemporary problems.
To teach students how to solve linear boundary problems using modern analytic and computational methods.
This module is at CQFW Level 7