Delivery Type | Delivery length / details |
---|---|
Lecture | 20 x 1-hour lectures |
Seminars / Tutorials | 2 x 1-hour seminars/workshops/exercise classes; 2 x 1-hour tutorials |
Assessment Type | Assessment length / details | Proportion |
---|---|---|
Semester Exam | 2 Hours written examination | 70% |
Semester Assessment | 2 Example Sheets. Course Work | 30% |
Supplementary Exam | 2 Hours written examination | 100% |
On completion of this module, students should be able to:
1. Describe the basic principles of the special and general theories of relativity;
2. Solve problems in relativity by application of the basic principles and by the selection and use of appropriate mathematical techniques;
3. Provide mathematical models for problems on damped and forced oscillatory systems, simple coupled systems and rotating bodies, solve the mathematical problems and interpret the results in the physical context.
Classical mechanics has proved very successful in explaining and predicting the behaviour of bodies moving at low speeds but not at speeds approaching that of light, while relativity deals with the latter situations. This module develops the fundamental concepts and techniques of both of these theories, providing a sound mathematical basis in each case.
To gain understanding of the classical theory of mechanics and the theory of relativity fundamental to modern physics. The application of mathematics throughout this module ensures that it is suitable as a core module for many honours degree schemes in Mathematics.
This module is at CQFW Level 5