Delivery Type | Delivery length / details |
---|---|
Lecture | 33 |
Seminars / Tutorials | 3 SEMINARS |
Practical | 3 APPLICATION WORKSHOPS |
Assessment Type | Assessment length / details | Proportion |
---|---|---|
Semester Exam | 2 Hours written examination | 50% |
Semester Assessment | assignment sheets | 40% |
Semester Assessment | review presentations | 10% |
Supplementary Assessment | 3 Hours written examination | 100% |
On successful completion of this module students should be able to:
1. explain the source of the Sun's energy
2. describe the flow of energy through the different zones of the Sun's interior
3. explain how helioseismology and neutrino counts give information on the Sun's interior
4. discuss the origins of solar activity in the solar interior
5. identify different features on the surface of the Sun under quiet and active conditions
6. recognise the problem posed by coronal heating
7. describe how to measure the electron density and velocity of interplanetary space
8. derive Parker's simple theory of the solar wind and list its limitations
9. estimate the location of the solar wind termination shock and list the limitations of the simple model used to calculate this position
10. recognise the important factors in Sun-planetary coupling over short and long time-scales
11. discuss the main features of Sun-comet coupling
This module examines in detail the physics of our nearest star and its interaction with solar system objects and the local interstellar medium. Energy production and transport in the Sun are discussed, together with the causes and effects of solar activity, coronal heating, the emergence and evolution of the solar wind and its interaction with magnetised and unmagnetised objects and the interstellar medium. In recent years substantial advances have been in our understanding of the Sun and its extended atmosphere. From 2006 further advances are to be expected with the launch of the STEREO and Solar-B spacecraft. The extension to a 20-credit course will make it possible to give students an review of this rapidly advancing area of science.
This module is at CQFW Level 6