Gwybodaeth Modiwlau

Module Identifier
PH33710
Module Title
SCIENCE OF SEMICONDUCTOR APPLICATIONS
Academic Year
2012/2013
Co-ordinator
Semester
Semester 2
Pre-Requisite
Pre-Requisite
PH24520 Successful completion of Part 2
Other Staff

Course Delivery

Delivery Type Delivery length / details
Lecture 22 lectures
 

Assessment

Assessment Type Assessment length / details Proportion
Semester Assessment Essays written during the Semester  70%
Semester Assessment Continuous Assessment: test  30%
Supplementary Exam 2 Hours   Supplementary exam  100%

Learning Outcomes

After taking this module students should be able to:

  • describe the complete route from the production of semiconductor substates and thin film structures to the production of packaged electronic devices
  • critically analyze the technical issues involved (size, cost, power consumption etc.) in the production of an integrated device.
  • critically analyze characterization methods for semiconductor materials and devices.
  • design a simple digital circuit and layout the design using CAD tools.

Brief description

In combination with Semiconductor Physics, the Semiconductor Applications module will not only provide students with an understanding of the physics underlying semiconductor devices and applications but also introduce them to the processing of semiconductors to produce devices.
1) wafer production - single crystal
2) wafer processing - lithography
3) characterisation
4) device preparation
5) the VLSI design process

Content

Introduction to science of semiconductors and microelectronic technology.

Physics and chemistry of bulk semiconductor growth. Epitaxial growth of thin films.

Wafer processing:
oxidation, insulating films; lithography (optical, x-ray, electron-beam, ion-beam); etching (wet chemical, plasma, reactive ion); dopant diffusion, ion implantation; metallisation.

Physics of electron, ion and photon interaction with matter.

Bulk and thin film characterisation techniques:
electrical (conductivity, mobility), optical (reflectance, luminescence), compositional (spectroscopy, microscopy), structural (diffraction, scanned probe).

Statistical process control, quality control analysis:
Device electrical testing, VLSI testing.

Reading List


DV Morgan and K Board An Introduction to Semiconductor Microtechnology J Wiley Primo search I Brodie and JJ Murray Physics of Microfabrication Plenum Primo search M Jaros Physics and Applications of Semiconductor Microstructures Oxford Primo search N Weste and K Eshraghian Principles of CMOS design Primo search

Notes

This module is at CQFW Level 6