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Abstract 

   In luminescence dating, there are various software 

packages that can be used to do data analysis, such as 

Analyst, Java RadialPlotter, Sigmaplot
TM

 and so on. 

There is also an open source R package 

Luminescence, which has the capacity to tackle not 

only lots of basic statistical analysis but also provide 

more advanced data treatment. In this article, we 

present another R package, numOSL, the aim of 

which is neither to present a comprehensive numeric 

tool for luminescence dating just as the R package 

Luminescence did, nor to cover all numeric topics 

regarding luminescence dating. We focus only on the 

most frequently encountered numeric problems 

concerning luminescence dating, including equivalent 

dose calculation and error estimation, decay signal 

decomposition, fast-component equivalent dose 

calculation, and statistical age model optimization. 

Almost all our code is written in Fortran and is linked 

to R using an interface in order to improve 

algorithms, generality and flexibility. This makes it 

faster and perhaps more powerful when comparing to 

other numeric software.  

 

Introduction 

   Basic numeric techniques are an important aspect 

of luminescence dating, which are frequently 

encountered in daily handling of luminescence data. 

These numeric techniques may include: 1) 

interpolation; 2) non-linear parameter optimization; 

3) Monte-Carlo simulation; and 4) maximum 

likelihood estimation. Many software packages can 

be used to perform a special kind of numeric analysis 

for luminescence dating. For example, Analyst 

(Duller, 2007a) is mainly used for basic data handling 

such as data import/export, equivalent dose 

calculation, and plotting of graphs. Java 

RadialPlotter (Vermeesch, 2009) focuses on 

optimizing parameters in Galbraith’s statistical age 

models and drawing radial plots (Galbraith, 1988). 

SigmaPlot
TM has been frequently employed to carry 

out decay curve fitting (Choi et al, 2006). However, 

if one wants to perform more flexible and more 

comprehensive analysis on a series of different kinds 

of data, such as curve fitting with decay signal data, 

or statistical age model analysis with equivalent dose 

(ED) values, no single software mentioned above can 

satisfy all the requests. There also is an open source 

R package Luminescence (Kreutzer et al, 2012, 

Dietze et al, 2013) written in pure R language, which 

contains more comprehensive numeric routines to 

analyze various kinds of luminescence data. Though 

flexible, sometimes pure R function run very slowly, 

which may impede its implementation in problems 

that need a great number of iterations or Monte-Carlo 

simulations.  

   R serves as excellent statistical software (Ihaka and 

Gentleman, 1996; R Core Team, 2013), and is free of 

charge. Most importantly, code written in R is 

available to the user and might be modified and 

redistributed. Another significant characteristic of R 

is that it can easily communicate with other 

programming languages such as Fortran and C++. 

Hence one can write the time-consuming part of a 

program in Fortran or C++ and then link it to R 

using an interface to achieve acceptable running 

speed. This remains R’s flexibility and also makes it 

really powerful. In this paper, we introduce the R 

package numOSL as a toolbox for numeric 

optimizations that are frequently encountered in 

luminescence dating. To make it flexible and 

powerful, almost all our functions are written in 

Fortran and are linked to R using interface. The aims 

of this paper are: 1) unifying regular numeric routines 

in luminescence dating into handy functions and 

make them available to all users; 2) introducing the 

usage of these functions with examples.  
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Introduction to functions in R package numOSL  

 

Function: calED 

   Currently, there are eight functions in package 

numOSL (Table 1). Function “calED” is used to fit a 

dose-response curve using the Levenberg-Marquardt 

algorithm and calculate an ED value by interpolation. 

Three models are provided (linear, exponential, linear 

plus exponential model) to do the fitting. For the 

linear model the fitting will not be a problem, but 

when it comes to an exponential or an exponential 

plus linear model, care needs to be taken regarding 

the choice of initial parameters. There are two 

options in function “calED” that can be used to 

initialize non-linear parameters: “nstart” and “upb”. 

“upb” is used to control the upper boundary of the b 

value in the non-linear model, which will be 

generated uniformly in the space (0, upb); then other 

initial values can be obtained with linear algebra 

method. For example, in an exponential model of the 

formula   cea bx  1y , combining paired 

observations (xi, yi, i=1,…,n) with a uniformly 

distributed random b value, a and c can be calculated 

using a linear algebraic method. Then the Levenberg-

Marquardt algorithm will be called to optimize those 

parameters. The process will be carried out 

repeatedly until stopping conditions are satisfied. The 

maximum allowed number of attempts is set to be 

“nstart”. The standard error of the ED value can be 

assessed using two methods (simple transform and 

Monte-Carlo simulation) outlined by Duller (2007b). 

Figure 1 is the outputted plot if we input the 

following commands to the R console: 

 
  library(numOSL) 

  Curvedata<-data.frame(cbind( c(0, 18, 36, 54, 72),  

         c(0.03,1.49,2.51,3.32,4.0),       

         c(0.002,0.05,0.12,0.34,0.37) ) ) 

  Ltx<-c(3.11, 0.131) 

  res<-calED(Curvedata, Ltx, model = "exp", nsim = 3000) 

  res 

 

 

 

 

Function: decomp 

   Function “decomp” is a unified function for decay 

curve decomposition and can be applied either to 

CW-OSL or LM-OSL decay curves. Fitting decay 

curves is an ill-conditioned problem, and it is very 

sensitive to the choice of initial parameters. To make 

the procedure flexible and practicable, CW-OSL 

decay curves are fitted using a combination of a 

differential evolution method and the Levenberg-

Marquardt algorithm as suggested by Bluszcz and 

Adamiec (2006). The general procedure for CW-OSL 

Table 1: Available functions in version 1.0 of 

package numOSL 

Function Description 

calED Calculate an ED value and 

assess its standard error 

dbED Summarize the statistical 

characteristics of the 

distribution of ED values 

decomp Decompose CW-OSL or LM-

OSL decay curves  

decompc Decompose CW-OSL or LM-

OSL decay curves (plus a 

constant component) 

fastED Calculate a CW-OSL ED value 

using the fastest component 

print.RadialPlotter Print an object of class 

“RadialPlotter” 

RadialPlotter Optimize parameters of 

Galbraith’s statistical age 

models  

sgcED Calculate ED values using the 

standardized grow curve 

method 

 

 

 
 

Figure 1: Plot output for function “calED”. The 

shaded area shows a gaussian kernel density plot for 

3,000 ED values simulated with a Monte-Carlo 

technique. 
 

fitting is: parameters are initialized using a 

differential evolution algorithm, and then using these 

initial parameters the Levenberg-Marquardt 

algorithm is employed for optimization. As pointed 

out by Bluszcz and Adamiec (2006), in some radical 

cases, the differential evolution algorithm (Storn and 
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Price, 1997) may fail, and we also note that 

sometimes parameters can be initialized with the 

differential evolution algorithm successfully but the 

Levenberg-Marquardt algorithm fails. If any of the 

two situations mentioned above occurs, a series of 

simple trials will be carried out, that is: detrapping 

rates are initialized to values outlined by Jain et al 

(2003) using permutation and combinations. For 

example, if we wish to decompose a given CW-OSL 

decay curve to 3 components, there will be C(3,7)=35 

possible combinations of detrapping rates. Then for 

each possible combination of detrapping rates the 

number of trapped electrons that correspond to those 

detrapping rates can be obtained using a linear 

algebra method (Bluszcz, 1996) and these values will 

be used as initial parameters for the Levenberg-

Marquardt algorithm. The above process is 

performed repeatedly until an acceptable result is 

found. Since the program is written in Fortran and 

wrapped with R, the whole procedure can be 

executed very quickly. The simple trial method 

described above is exactly the tactic we adopt in LM-

OSL decay curves decomposing. Because we find it 

difficult to use the same method as used for fitting 

CW-OSL decay curves. The longer stimulation time 

makes it so time-consuming to conduct the 

differential evolution algorithm, even if all parts of 

the program are written in pure Fortran, that it 

becomes impracticable. Using the following 

commands in the R console we can obtain the plot 

shown in Figure 2 and Figure 3, respectively. The 

optional parameter “outfile” can be used to output 

decomposed signal values to a file and save it into the 

current work directory in “.csv” format (here the file 

will be “lmsig.csv”). 

 
  data(Signaldata) 

  print(decomp(Signaldata$cw[,1:2], ncomp=3, lwd=2)) 

  res<-decomp(Signaldata$lm, ncomp=4, typ="lm",  

          transf=TRUE, lwd=2, outfile="lmsig" )  

  res 

 

 

Function: fastED 

   A basic requirement for the application of the 

single-aliquot regenerative dose protocol (Murray 

and Wintle, 2000) is that the initial part of the OSL 

signal is dominated by the fast component (Li and Li, 

2006). Generally, a fast-component ED value can be 

obtained through direct measurement (Bailey, 2010), 

component isolation with curve fitting (Cunningham 

and Wallinga, 2009) or integral channels selection 

(Cunningham and Wallinga, 2010). The function 

“fastED” attempts to build a fast-component growth 

curve to estimate a fast-component ED value using 

data obtained by the single-aliquot regenerative dose 

protocol  (a  series  of  decay  curves). The number of  

 
Figure 2: Decomposed 3 components for natural 

CW-OSL decay curve of sample GL1-1 (Peng and 

Han, 2013) using function “decomp”. The estimated 

parameters (magnitudes and decay rates) are given 

in table 3. 

 
Figure 3: Decomposed 4 components for a LM-OSL 

decay curve (Li and Li, 2006) using function 

“decomp”. The estimated parameters are given in 

table 3. 

 

 

trapped electrons that corresponds to the largest 

decay rate will be regarded as the fast-component 

signal, which cannot always ensure a pure fast-

component signal to be extracted if ultra-fast 

component appears. The number of components to be 

decomposed  is  specified by the  argument “ncomp”.  
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Figure 4: Result of fast-component ED estimation for sample GL1-1 with 3 components using function “fastED”. A 

total of 12 decay curves are decomposed and the growth curve is constructed with the extracted standardized fast-

component signals. 

 

During the calculation, the model used for growth 

curve fitting is chosen automatically with the 

principle of the minimum sum of square of residuals. 

Only CW-OSL data can be analyzed currently. We 

use sample GL1-1 (Peng and Han, 2013) as an 

example to show the usage of this function, the two 

decay curves that correspond to 0 regenerative dose 

are precluded before the analysis and each decay 

curve is decomposed to 3 components. The plot is 

shown in Figure 4: 

 
 fastED(Signaldata$cw[,c(-12,-13)],  

  ncomp=3, constant=FALSE, 

  Redose=c(80,160,240,320,80)*0.13) 

 

   The running time of the above process can be 

checked by R inner function “system.time” as: 

 
 system.time(fastED(Signaldata$cw[,c(-12,-13)], 

   ncomp=3, constant=FALSE, 

   Redose=c(80,160,240,320,80)*0.13)) 

 

Function: RadialPlotter 

   Function “RadialPlotter” is a unified function for 

optimizing a number of statistical age models as 

reviewed in Galbraith and Roberts (2012). It provides 

routines for the central age model (Galbraith et al, 

1999), the finite mixture age model (Galbraith, 1988, 

Galbraith and Laslett, 1993) and the minimum age 

model (Galbraith et al, 1999). Depending on the 

specified model, it draws a radial plot automatically,  
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Figure 5: Radial plot output for 3-parameter 

minimum age model of sample GL1-1 with function 

“RadialPlotter”. The black line indicates estimated 

minimum ED value. 

 

which works just like the Java RadialPlotter written 

by Vermeesch (2009). Both the central age model 

and the finite mixture age model are analyzed using 

the maximum likelihood estimation method outlined 

by Galbraith (1988). For minimum age models, it 

provides  two  numeric  procedures to do the task: the 

“L-BFGS-B” algorithm (Zhu et al, 1994) and the 

“port” routine (the “port” algorithm is conducted 

using R inner function “nlminb” in package stats). 

The result returned by the function “RadialPlotter” is 

an object of class “RadialPlotter”. An example of 

using this function to fit a three-parameter minimum 

age model with sample GL1-1 is shown below, and 

the output is Figure 5: 

 
 data(EDdata) 

 obj<-RadialPlotter(EDdata$gl11,ncomp=-1,    

         zscale=seq(20,37,3),kratio=0.6) 

unclass(obj) 

 

   When attempting to fit the finite mixture model 

there is a parameter “maxcomp” that can be used to 

control the maximum allowed number of 

components. The function will search for the number 

of components that gives a minimum Bayesian 

Information Criterion (BIC) value (Schwarz, 1978) in 

the finite mixture model. Here we use sample AL3 

(Schmidt et al, 2012) as an example to find out the 

most appropriate number of components. In the 

following codes, the maximum number of 

components is set to be 15. The radial plot created by 

this function is shown in Figure 6. A plot for BIC and 

maximized logged likelihood values against the 

number  of  components is shown in Figure 7,  which  

 

 
 

Figure 6: Radial plot output for finite mixture age 

model of sample AL3 with function “RadialPlotter”. 

The appropriate number of components that gives a 

minimum BIC value is found automatically at 4. The 

black lines are characteristic ED values for the 

estimated 4 components, respectively. The estimated 

parameters (proportion and characteristic ED value 

for each component) are summarized in table 4. 

 
Figure 7: Variations of BIC and maximized logged-

likelihood values with the number of components for 

sample AL3. The blue points are the BIC values while 

the red points are logged-likelihood values. 

 

 

shows that 4 components given the minimum BIC 

value and should be regarded as the most appropriate 

number of components. 
 

 obj<-RadialPlotter(EDdata$al3, ncomp=0, maxcomp=15,  

zscale=seq(25,85,5), kratio=0.6) 

 print(obj) 
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Table 2: Comparing Duller’s (2007b) results with that obtained using function “calED” in R package numOSL 

(version 1.0). 

 

 R package numOSL Duller (2007b) 

 ED  Curve fitting  Monte Carlo ED  Curve fitting Monte Carlo 

Data 1 0.7 0.7±0.06 0.7±0.07 0.7 0.7±0.06 0.7±0.06 

Data 2 28.5 28.5±0.67 28.5±0.76 28.5 28.5±0.67 28.5±0.75 

Data 3 0.043 0.043±0.0056 0.043±0.002 0.046 0.046±0.004 0.046±0.001 

Data 4 0.71 0.71±0.11 0.71±0.14 0.71 0.71±0.11 0.71±0.13 

 

 

Table 3: Comparing results of decay curve decompositions obtained using function “decomp” in R package 

numOSL (version 1.0) with that obtained using SigmaPlot
TM

 (version 10.0) and R package Luminescence (version 

0.2.4) (Kreutzer et al, 2012) for natural CW-OSL decay curve of sample GL1-1 and LM-OSL decay curve of a 

quartz sample (Li and Li, 2006). a and b are estimated magnitude and decay rate for each signal component, 

respectively. 

 

  R package numOSL SigmaPlot
TM

 R package Luminescence 

Component a b a b a b 

CW-

OSL 

#1 5240 ± 115 6.11 ± 0.16 5240 ± 104 6.11 ± 0.14 5240 ± 213 6.11 ± 0.30 

#2 166.6 ± 25.8 0.59 ± 0.11 166.6 ± 21.0 059 ± 0.08 166.6 ± 6.28 0.59 ± 0.002 

#3 128.3 ± 3.40 0.008 ± 0.001 128.3 ± 2.94 0.008 ± 0.001 128.3 ± 48.0 0.008 ± 0.20 

 residual =43454 residual =43453.65 residual=43454 

LM-

OSL 

#1 20769 ± 668 2.54 ± 0.065 20800 ± 663 2.54 ± 0.068 20771 ± 1759 2.54 ± 0.16 

#2 11787 ± 520 0.51 ± 0.053 11798 ± 619 0.5 ± 0.048 11787 ± 3685 0.51 ± 0.13 

#3 14941 ± 1038 0.05 ± 0.007 14995 ± 1158 0.05 ± 0.006 14943 ± 4633 0.05 ± 0.018 

#4 721057 ± 25497 0.002 ± 0.0001 722659 ± 26461 0.002 ± 0.0001 721118 ± 65749 0.002 ± 0.0002 

 residual =373062.8 residual =373066.02 residual=373063 

 

 

Table 4: Comparing results of finite mixture age model obtained using Java RadialPlotter (vesion 4.4) (Vermeesch, 

2009) and that obtained using function “RadialPlotter” in R package numOSL (version 1.0) for sample AL3 and 

sample GL1-1. The numbers of components (k) that give minimum BIC values are estimated automatically in the 

finite mixture age model. The spreads (sigma) in ED values are set to be 0.0.  

 

sigma=0.0 R package numOSL Java RadialPlotter 

AL3 k=4 k=4 

p1=2.1%±1.8% u1=26.4±1.9 p1=2.1%±1.8% u1=26.4±2.0 

p2=35.1%±6.5% u2=40.1±0.7 p2=35.2%±6.4% u2=40.1±0.7 

p3=40.8%±6.7% u3=52.6±1.2 p3=40.7%±6.7% u3=52.7±1.2 

p4=22.0%±4.9% u4=77.9±2.2 p4=22.0%±9.4% u4=77.9±2.2 

GL1-1 k=3 k=3 

p1=37.6%±10.9% u1=22.0±0.4 p1=38.0%±11.0% u1=22.0±0.5 

p2=50.9%±11.3% u2=25.7±0.4 p2=51.0%±11.0% u2=25.7±0.4 

p3=11.5% ±5.9% u3=33.7±0.9 p3=11.0%±16.0% u3=33.8±0.9 

 

 

 

 

Comparison with other software 

   The reliability of these routines was checked by 

comparing the results with those displayed in 

published articles or obtained using other software. 

The function “calED” was tested using the same data 

and results that were published in Duller (2007b) 

(Table 2); results obtained by function “decomp” are 

compared to that obtained using SigmaPlot
TM

 and R 

package Luminescence (Kreutzer et al, 2012) (Table 

3); function “RadialPlotter” is checked by comparing 

the results with that estimated using Java 

RadialPlotter (Vermeesch, 2009) (Table 4). The 

results of all the tests are comparable between the 

different software packages. 
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Discussion and conclusion  

   Numeric techniques such as Monte-Carlo error 

simulation, and differential evolution are time-

consuming tasks. Decomposing decay curves to 

various components and maximum likelihood 

estimations of Galbraith’s statistical age models 

(especially the minimum age model) are ill-

conditioned mathematical problems; whether it is 

possible to obtain a reasonable result depends heavily 

on the choice of initial parameters. Hence to make 

the program have the capacity to be applicable to a 

wide range of data sets, trying various initial 

parameters is indispensable, which, on the other 

hand, slowdowns the running speed. This problem 

will be especially significant if one wants to use the 

results to do some further analysis. For example, one 

may need to calculate ED values and assess their 

standard errors repeatedly when using the SGC 

method (Roberts and Duller, 2004). Alternatively if 

one hopes to decompose a series of decay curves to 

build a dose-response curve in order to calculate a 

fast-component ED value for data this requires 

general and fast routines. 

   In this paper, we present an R package (numOSL) 

for tackling regular numeric problems that are 

frequently encountered in analyzing luminescence 

data. This is the second R package concerning 

luminescence dating that is available on the 

Comprehensive R Archive Network (CRAN), but the 

work presented here is not a duplicated version for R 

package Luminescence. We focus only on regular 

numeric routines in luminescence dating and aim to 

make those routines more general and robust through 

a mixture programming language of R and Fortran. 

The tests show that results generated by package 

numOSL are comparable to other numeric packages. 

Flexible as it is, however, we must admit that users 

may need some basic knowledge about the R 

programming language when attempting to use an R 

package. So if one only needs to do some basic 

handling or plotting of luminescence data, the best 

choice would be Analyst, which is sufficient for 

rudimentary data processing and is user-friendly. The 

R package numOSL is provided under the General 

Public Licence (GPL3) conditions, which is free 

software and can be downloaded freely from 

http://CRAN.R-project.org/package=numOSL. 

Anyone who finds a bug during the use of this 

package is encouraged to contact the corresponding 

author. 
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Abstract 

   The reproducibility of the Risø single-grain 

measurement system has previously been quantified 

for the analysis of individual grains of quartz using 

the green laser and for single-grains of K-feldspar 

using the infrared (IR) laser at 50 °C. However, 

reproducibility estimates for a single-grain 

measurement system analysing K-feldspar grains 

using the post-IR IRSL (pIRIR) signal do not exist. 

This study provides the first measurement 

reproducibility estimates for both the pIRIR225 and 

pIRIR290 protocol using an IR laser. It is found that 

holding a sample at elevated temperatures (e.g. 

225°C or 290°C) prior to measurement leads to loss 

of the pIRIR signal. The default single grain 

procedure implemented by the Risø reader may 

involve holding the sample at this elevated 

temperature for periods up to several hundreds of 

seconds, and that crucially this time may vary from 

one measurement to another, leading to poorer 

measurement reproducibility. The study demonstrates 

that the measurement procedure can be modified to 

standardise the time spent at high temperature (e.g. 

290°C) and hence improve the reproducibility of the 

measurement system. The optimised procedure 

provides reproducibility estimates of 2.8 ± 0.3 % and 

2.6 ± 0.3 % for the pIRIR225 and pIRIR290 signal, 

respectively, which are comparable to similar 

measurements performed with the green laser and the 

IR laser at 50 °C. 

 

Introduction 

   Optically stimulated luminescence (OSL) dating 

with single-grains is a valuable approach in 

depositional environments where grains are likely to 

be incompletely-bleached. Single-grain dating 

involves analysing individual mineral grains (e.g. 

quartz or feldspar) to provide natural dose-

distributions, which can then be statistically modelled 

to determine the true burial age. A major challenge 

for routine single-grain dating of sedimentary quartz 

from incompletely-bleached sediment is that typically 

only 5 % or fewer of the grains emit a detectable 

OSL signal, e.g. as few as 0.5 % of quartz grains 

could be detected from glaciofluvial sediments from 

Chile (Duller, 2006). In contrast to quartz, a larger 

proportion of K-feldspar grains emit a detectable 

infrared stimulated luminescence (IRSL) signal (e.g. 

Duller et al. 2003). However, the IRSL signal of K-

feldspars measured at ~50 °C (IR50) is reported to 

ubiquitously suffer from anomalous fading, and 

therefore may require fading-correction to provide an 

accurate depositional age (Huntley and Lamothe, 

2001). Thomsen et al. (2008, 2011) extensively 

studied the fading rates of feldspars in response to 

different stimulation and detection conditions, and 

suggested that a more stable post-IR IRSL (pIRIR) 

signal can be accessed within feldspar grains using an 

initial IRSL stimulation at 50 °C followed by an 

elevated temperature IRSL stimulation, typically 

performed at 225 °C or 290 °C, hereafter termed the 

pIRIR225 and pIRIR290 signals. Given that large and 

variable fading rates are often reported for single-

grain K-feldspars measured using the IR50 signal (e.g. 

Trauerstein et al. 2012), and also the difficulty in 

making accurate and precise fading measurements on 

individual grains, single-grain dating with K-feldspar 

would benefit from accessing the more stable pIRIR 

signal. 

   Measuring individual De values from single-grains 

normally results in more scatter in dose-distributions 

than is typical from multiple-grain analysis. 

Calculating the associated uncertainties in the De 

values for each grain requires knowledge of both the 

photon counting statistics and the reproducibility of 

the measurement system, though scatter may also 

arise from other factors that have not yet been 

identified. The reproducibility of the measurement 

system is dependent upon the thermal treatment, 

optical stimulation and material response for 

individual grains during measurement. Thus, 

measurement reproducibility is expected to vary 

between different readers used for single-grain 

measurements, the samples analysed, and between 

the IRSL and pIRIR signals used to measure K-

feldspar grains.   A challenge for IRSL analysis of K- 
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Step IR60 pIRIR225 pIRIR290 

1 Dose (100 Gy) Dose (100 Gy) Dose (100 Gy) 

2 Preheat 250°C for 60 s Preheat 250°C for 60 s Preheat 320ºC for 60 s 

3 IR laser 2 s at 60°C IR laser 2 s or LEDs 100 s at 60°C IR laser 2 s or LEDs 100 s at 60°C 

4 Test-dose (100 Gy) IR laser 2 s at 225°C  IR laser 2 s at 290°C 

5 Preheat 250°C for 60 s Test-dose (100 Gy) Test-dose (100 Gy) 

6 IR laser 2 s at 60°C Preheat 250°C for 60 s Preheat 320ºC for 60 s 

7 IR laser 2 s or LEDs 100 s at 290°C IR laser 2 s or LEDs 100 s at 60°C IR laser 2 s or LEDs 100 s at 60°C 

8  IR laser 2 s at 225°C IR laser 2 s at 290°C  

9  IR laser 2 s or LEDs 100 s at 290°C IR laser 2 s or LEDs 100 s at 330°C 

 

Table 1: Experimental details for the single-aliquot regenerative dose (SAR) pIRIR measurements performed 

throughout this study with the IR60, pIRIR225 and pIRIR290 signals for single grains of K-feldspar. Note that the 

signal was measured for 0.15 s before and after the IR stimulation was performed so the IR laser was stimulating 

for a total duration of 1.7 s. 

 
feldspars is the thermal-dependence  of the  

magnitude  of the signal (Duller and Wintle, 1991; 

McKeever et al. 1997), which has the potential to 

make measurement of the pIRIR signal less 

reproducible than that of IRSL signal. Calculating the 

reproducibility of the measurement system is 

important so that the appropriate uncertainty is 

incorporated into De estimates. However, 

measurement reproducibility estimates are not 

currently available for the Risø single-grain K-

feldspar system using the pIRIR signal. Estimates of 

the reproducibility of the single-grain measurement 

system only currently exist for sedimentary grains of 

naturally-occurring quartz analysed using the green 

laser (e.g. Truscott et al. 2000; Thomsen et al. 2005; 

Jacobs et al. 2006) and K-feldspar analysis using the 

IR laser at 50 °C (e.g. Trauerstein et al. 2012).  

   Truscott et al. (2000) used an early prototype of the 

single-grain system equipped with a green laser to 

perform repeated Lx measurements on sensitised 

quartz grains to calculate a measurement 

reproducibility of 3.5 % per stimulation. Jacobs et al. 

(2006) subsequently repeated the measurements of 

Truscott et al. (2000) on sensitised grains of quartz to 

calculate the reproducibility of an improved single-

grain laser system. The calculated mean measurement 

reproducibility estimate was 2.6 % (range ~1 – 8 %) 

and 1.3 % (range ~ 0.5 – 5 %) for optical stimulation 

times of 0.04 s and 0.3 s, respectively. The 

reproducibility improved when a longer summation 

interval was used as the decay rate is controlled by 

the power of the laser and this may vary slightly for 

individual stimulations; summing a larger part of the 

decay curve reduces the impact of the variable laser 

power during individual stimulations. Thomsen et al. 

(2005) also measured the reproducibility of a similar 

single-grain system with repeated Lx/Tx sensitivity-

corrected measurements and calculated a mean (± 

standard error) of 2.5 ± 0.3 % and 1.5 % per OSL 

measurement for 0.03 s and 0.57 s of optical 

stimulation, respectively, which is comparable to 

Jacobs et al. (2006). Finally, Trauerstein et al. (2012) 

adopted the approach of Thomsen et al. (2005) for 

single-grain analysis of K-feldspars using the IR50 

signal and calculated an estimate of reproducibility of 

2.4 % (1 s of optical stimulation).  

   The principle aim of this study is to calculate the 

reproducibility of single-grain measurements of K-

feldspar using the pIRIR signal. In addition, this 

study also aims to assess whether the reproducibility 

of the measurement system using the pIRIR signal 

can be optimised by (1) reducing the temperature at 

which the single-grain disc is held during disc 

location from the elevated temperature (i.e. 225 °C or 

290 °C) to room temperature, and (2) using IR light 

emitting diodes (LEDs) instead of the IR laser to 

perform the low temperature measurements (here 

made at 60 ºC) prior to the pIRIR measurements, and 

for bleaching grains at an elevated temperature at the 

end of each SAR cycle.  

 

Experimental details 

   All luminescence measurements were performed 

using a Risø DA-15 automated TL/OSL single-grain 

system equipped with an IR laser (150 mW; 830 nm) 

(Bøtter-Jensen et al. 2003, Duller et al. 2003) at the 

Aberystwyth Luminescence Research Laboratory. 

The IR laser beam line was fitted with an RG-780 

filter to remove any shorter wavelengths and a blue 

filter pack (Schott BG-39, GG-400 and Corning 7-

59) was placed in front of the photomultiplier tube. 

The inclusion of the GG-400 filter is used to ensure 

complete removal of the thermally unstable UV 

transmission centred on 290 nm emitted during IR 

stimulation of feldspars (e.g. Balescu and Lamothe, 

1992; Clarke and Rendell, 1997). The system was 

equipped with a 
90

Sr/
90

Y beta source delivering ~0.04 

Gy/s. Table 1 outlines the protocols used for the three 

signals;  IR60,  pIRIR225 and  pIRIR290.   Ten  repeated  
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Figure 1: Examples of the repeated Lx and Tx decay curves measured with the pIRIR225 signal for individual grains 

of K-feldspar from GDNZ13 for a) the brightest grain (measurement reproducibility of 12.0 %), b) the dimmest 

grain (measurement reproducibility of 8.9 %), c) the grain with the largest measurement error estimate 

(measurement reproducibility of 18.7 %) and d) the grain with the smallest measurement error estimate 

(measurement reproducibility of 0.6 %). The inserts show the change in Lx/Tx for the repeated measurements. Note 

that the disc location was performed at the elevated temperature of 225 °C and the IR bleaching throughout the 

protocol was performed with the IR laser. 

 

Lx/Tx measurements were performed with the IR 

laser; 100 Gy doses were used to maintain an 

appropriate signal-intensity throughout analysis. The 

signal was recorded for a total of 2 s, which included 

the measurement of signal for 0.15 s before and after 

the IR stimulation was performed so the grains are 

stimulated using the IR laser for a duration of 1.7 s. 

The initial signal was summed over the first 0.3 s of 

stimulation and the background from the final 0.6 s. 

Grains were rejected if the test-dose uncertainty was 

greater than 10 %. The number of grains that fail this 

criterion varies for different measurement and 

analytical conditions, but this had no impact upon the 

patterns described in this study. 

   A sedimentary dune sand sample from New 

Zealand (GDNZ13) was used throughout this study. 

The sample was treated with a 10 % v.v. dilution of 

37% HCl and 20 vols. of H2O2 to remove carbonates 

and organics, respectively. Dry sieving isolated the 

180 – 212 µm diameter grains and density-separation 

provided the < 2.58 g cm
-3

 (K-feldspar) fraction. The 

K-feldspar grains were not etched in hydrofluoric 

acid. The grains were mounted in aluminium single-

grain discs (a 10 x 10 grid of 300 µm holes). All the 

experiments were repeated on exactly the same suite 

of K-feldspar grains, which remained in the single-

grain disc throughout the analysis. Prior to these 

measurements the grains had been heated up to 330 

°C and thus were not expected to exhibit large 

changes in sensitivity during this sequence of 

measurements. 

   The uncertainty arising from the reproducibility of 

the measurement system was calculated by 

subtracting in quadrature the uncertainty arising from 

the counting statistics from the observed uncertainty 

in the repeated Lx/Tx measurements following 

Section 7.1 of Thomsen et al. (2005). The uncertainty 

arising from the counting statistics for each 

individual grain was calculated using the equations 

outlined in Section 3 of Thomsen et al. (2005). The 

reproducibility of a single Lx measurement was then 

calculated from this value by dividing by 2 (Section 

7.1, Thomsen et al. 2005). Fig. 1 presents examples 

of   the   Lx  and  Tx  decay   curves   produced   from  
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Protocol 
IR60 

bleach 

High 

temperature 

bleach 

Disc location 

temperature 

Mean ± Standard 

error (%) 

Standard 

deviation 

(%) 

Range (%) ‘n’ 

IR60 - LEDs 60 °C 3.6 ± 0.3 2.4 0.3 – 10.0 49 

pIRIR225 Laser Laser 225 °C 5.9 ± 0.5 3.7 0.6 – 18.7 49 

pIRIR225 Laser Laser 60 °C 4.7 ± 0.4 3.1 0.5 – 14.6 48 

pIRIR225 LEDs LEDs 60 °C 2.8 ± 0.4 2.8 0.3 – 10.9 45 

pIRIR290 Laser Laser 290 °C 4.7 ± 0.6 3.6 0.5 – 16.2 38 

pIRIR290 Laser Laser 60 °C 3.6 ± 0.4 2.4 1.0 – 11.3 43 

pIRIR290 LEDs LEDs 60 °C 2.6 ± 0.3 1.8 0.2 – 8.2 36 

 
Table 2: Measurement reproducibility estimates for the IR60, pIRIR225 and pIRIR290 signals measured using the 

single grain system. 

 

repeated single-grain pIRIR225 measurements.  For 

these measurements the disc location was performed 

at the elevated temperature of 225 °C prior to the 

stimulation at 225 °C. The default setting of the Risø 

system is for the disc location to be performed at 

whatever temperature the optical stimulation will 

occur. All of the data shown in Fig. 1 was collected 

using a sequence in which the IR laser was used for 

the measurements at 60 °C prior to the pIRIR 

measurement, and the IR laser was used for the 

elevated temperature bleaching at the end of each 

cycle (step 9 in Table 1). The examples shown in Fig. 

1 include a) the brightest grain (12.0 % measurement 

reproducibility) and b) the dimmest grain (8.9 % 

measurement reproducibility) from the single-grain 

population, in addition to the grains with c) the 

largest (18.7 %) and d) the smallest (0.6 %) 

measurement reproducibility estimates calculated 

from the single-grain population.  

   Table 2 presents the mean and standard error 

measurement reproducibility estimates for the 

different protocols employed, including the range of 

estimates for individual grains. The range of IRSL 

reproducibility estimates in this study (0.3 – 10.0 %) 

covers a similar range to those obtained by Jacobs et 

al. (2006) for quartz using the green laser and 0.04 s 

of optical stimulation (~1 – 8 %). However, the mean 

IR60 reproducibility estimate when the signal is 

summed over 0.3 s of optical stimulation (3.6 ± 0.3 

%) is larger than the 2.4 % (1 s of optical stimulation) 

published by Trauerstein et al. (2012). When a longer 

summation interval is used (2 s of optical 

stimulation) then the IR60 reproducibility becomes 

2.6 ± 0.4 %, almost identical to that of Trauerstein et 

al. (2012) because the effects from the reproducibility 

of the laser have been removed. Initial estimates of 

the measurement reproducibility for pIRIR225 and 

pIRIR290 single-grain measurements prior to making 

any alterations to the protocol to optimise the 

reproducibility were 5.9 ± 0.5 % and 4.7 ± 0.6 %, 

respectively (Table 2). Both estimates are larger than 

measurement reproducibility estimates presented here 

for the IRSL signal over comparable summation 

intervals (3.6 ± 0.3 %). 

 

Optimising the reproducibility of the single-grain 

measurement system  

   Two aspects of the measurement procedure were 

modified in an attempt to optimise the reproducibility 

of the single-grain measurement system using the 

pIRIR225 and pIRIR290 signals; (1) reducing the 

temperature at which each disc is held during disc 

location prior to stimulation with the IR laser from 

the stimulation temperature (i.e. 225 °C or 290 °C) to 

room temperature, and (2) replacing the IR laser with 

the IR LEDs to perform the 60 ºC measurements and 

the bleaches at an elevated temperature.  

 

Reducing the temperature during disc location 

   The three locating holes present on each single-

grain disc allow the Risø single-grain system to 

locate the exact position of the single-grain disc 

throughout the analysis (Duller et al. 1999). For 

single-grain measurements the software as installed 

by Risø is currently configured to heat the single-

grain disc to the elevated temperature required for 

optical stimulation (i.e. 225 °C or 290 °C for the 

pIRIR protocols) prior to disc location, e.g. the 

single-grain disc is held at the elevated temperature 

whilst the system locates the exact position of the 

disc; a process which can take up to ~200 s and may 

vary throughout the sequence.  

   The reason why the disc is heated to whatever 

temperature is going to be used for optical 

stimulation before disc location occurs is that it was 

feared that heating of the disc may cause the disc to 

rotate (Thomsen, Pers. Comm.). If this occurred after 

disc  location  then   the   disc  co-ordinates    may  be 
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a) Default tlmsll.cmd script  b) Modified tlmsll.cmd script 

[SGOSL] [SGOSL] 

; $1 Start Grain ; $1 Start Grain 

; $2 Stop Grain ; $2 Stop Grain 

; $3 Time ; $3 Time 

; $4 Total Datapoints ; $4 Total Datapoints 

; $5 Rate ; $5 Rate 

; $6 PreHeat Temp ; $6 PreHeat Temp 

; $7 Preheat Time ; $7 Preheat Time 

; $8 Laser Power ; $8 Laser Power 

; $9 Delay Before ; $9 Delay Before 

; $10 Delay After ; $10 Delay After 

; $11 Active Data points ; $11 Active Data points 

; $12 LightSource ; $12 LightSource 

  

5=PS $0 5=PS $0 

10=#RS 10=#RS 

15=#WLT 15=#WLT 

20=LU 20=LU 

25=#RS 25=#RS 

30=LV OFF 30=LV OFF 

35=ST $6 $5 40=#FD $12 $0 

40=#RS 50=#RS 

42=PA $7 55=LV ON 

45=#RS 60=#RS 

48=#FD $12 $0 62=ST $6 $5 

50=#RS 64=#RS 

55=LV ON 66=PA $7 

60=#RS 68=#RS 

75=LA SET $8 75=LA SET $8 

80=LI SET $8 80=LI SET $8 

85=#LOOP $1 $2 85=#LOOP $1 $2 

90=#INITGRAPH $4 90=#INITGRAPH $4 

95=#SG #LOOPCOUNT $12 $3 $4 $11 $10 $9 95=#SG #LOOPCOUNT $12 $3 $4 $11 $10 $9 

100=#DATA 100=#DATA 

105=#RS 105=#RS 

110=#ENDGRAPH 110=#ENDGRAPH 

115=#SAVE 115=#SAVE 

120=#ENDLOOP 120=#ENDLOOP 

125=#APPEND 125=#APPEND 

130=LD 127=ST 0 

135=#RS 130=LD 

 135=#RS 

 
Table 3: The default (a) and modified (b) tlmsll.cmd scripts from the latest version of TL/OSL sequence editor. 

 

 

incorrect and this would affect the ability of the laser 

to accurately strike the grains during IRSL 

measurements. 

   In this study, the default command script 

(tlmsll.cmd) originally installed with the software has 

been modified to undertake disc location at room 

temperature. Only once the position of the disc has 

been determined is the single-grain disc heated to the 

required temperature for the pIRIR measurement (i.e. 

225 °C or 290 °C for the pIRIR protocols); this 

ensures that the period of time spent at elevated 

temperature is consistent from one set of single grain 

measurements to the next. The default tlmsll.cmd 

script as installed by Risø and the modified 

tlmsll.cmd script of this study are presented in Table 

3a and b, respectively. The key difference in the 

modified script is that the Find Disc (FD) command 

is now undertaken first (line 40) before raising the 

hotplate temperature (ST) to the desired measurement 

temperature (line 62). 

   Experiments were performed using the pIRIR225 

and pIRIR290 signal on exactly the same suite of 

grains to assess the effect of reducing the disc 

location temperature from the elevated temperature 

(i.e. 225 °C or 290 °C) to room temperature. Table 2 

presents the mean and standard error, and range in 

measurement reproducibility estimates for the 

different single-grain populations. The pIRIR225 



54                                                                                                                                                                        Ancient TL Vol. 31 No.2  2013 

measurement reproducibility fell from 5.9 ± 0.5 % to 

4.7 ± 0.4 % when the disc location was performed at 

225 ºC and room temperature, respectively, while the 

pIRIR290 measurement reproducibility fell from 4.7 ± 

0.6 % to 3.6 ± 0.4 %. Reducing the disc location 

temperature improved the mean measurement 

reproducibility by ~3 % for both signals (when 

subtracted in quadrature). Figure 2 presents the 

cumulative number of grains as a function of 

measurement reproducibility for the pIRIR225 

(circles) and pIRIR290 (triangles) protocols using the 

disc location temperature of 225 °C or 290°C (closed, 

solid line) and room temperature (open, dashed line). 

The corresponding single-grain populations are 

shown in the histograms for the pIRIR225 (top) and 

pIRIR290 (bottom) signals. The number of grains with 

measurement reproducibility estimates  2 % 

increases from 10 % to 16 % for the pIRIR225 

protocol and from 20 % to 30 % for the pIRIR290 

protocol when the disc location temperature is 

reduced to room temperature. The data shown here 

demonstrate that the reproducibility of the single-

grain measurement system using the pIRIR225 and 

pIRIR290 signals of K-feldspar grains improves by 

reducing the disc location temperature to room 

temperature.  

 

Why does the reproducibility improve when the disc 

location temperature is reduced? 

   The mean signal-intensity of all the single-grain K-

feldspars on the single-grain disc was calculated for 

the sequences when disc location was performed at 

the elevated temperature and at room temperature. 

When the disc location temperature was reduced 

from the elevated temperature to room temperature 

the mean measured signal-intensity increased by ~23 

% and ~34 % for the pIRIR225 and pIRIR290 signals, 

respectively. The lower mean signal-intensity 

measured when using an elevated disc location 

temperature suggests that the pIRIR signal was 

thermally depleted throughout the period of time that 

it takes the single-grain measurement system to 

locate the disc. This thermal depletion would not 

occur if the disc was located at room temperature and 

could potentially explain the associated improvement 

in reproducibility. Additional experiments were 

performed to investigate whether thermal depletion 

of the pIRIR signal during disc location at elevated 

temperatures can explain the improvement in the 

reproducibility of the single-grain K-feldspar 

measurements. 

  

Experimental details 

   To assess whether loss of the pIRIR signal could be 

observed due to holding the sample at elevated 

temperatures a multiple-grain aliquot of K-feldspar 

from  sample  GDNZ13   that   had   previously  been  
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Figure 2: Measurement reproducibility as a function 

of cumulative grains for the experiments performed 

to optimise the reproducibility of the pIRIR225 

(circles) and pIRIR290 (triangles) single-grain K-

feldspar measurements. The histograms show the 

corresponding pIRIR225 (top) and pIRIR290 (bottom) 

single-grain populations. Data are shown (a) 

comparing measurements made with disc location at 

an elevated temperature (solid line; filled histogram) 

with those made at room temperature  (dashed line, 

open histogram), and (b) comparing measurements 

made undertaking the IR bleach in the pIRIR 

protocol with the focussed IR laser (solid line; filled 

histogram) to those undertaken with IR LEDs 

(dashed line; open histogram).  
 

 

bleached using IR LEDs and heated up to 330 °C was 

subject to two experiments. Tables 4a and 4b 

describe the measurement sequences used for 

experiment 1 (pulsed stimulation using the IR LEDs) 

and experiment 2 (continuous stimulation using the 

IR LEDs), respectively. In both experiments any 

remnant charge was removed in step 1. The aliquot 

was then given a dose of 100 Gy (step 2) and 

preheated (step 3) using the same procedure (320 °C 

for 60 s) as that used normally for pIRIR290 

measurements, and used in Table 1. In experiment 2 

the pIRIR290 signal was measured continuously for 5 

s, collecting data every 0.1 s, resulting in 50 data 

points. In experiment 1, 50 pIRIR290 measurements 

were also performed, but they were carried out over a  
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Step a) Pulsed IR LEDs b) Continuous IR LEDs 

1 IRSL at 330 °C for 100 s IRSL at 330 °C for 100 s 

2 100 Gy beta dose 100 Gy beta dose 

3 TL 320 °C for 60 s TL 320 °C for 60 s 

4 IRSL at 60 °C for 100 s IRSL at 60 °C for 100 s 

5 Record TL signal as heating up to 290 °C IRSL at 290 °C for 5 s 

6 IRSL at 290 °C for 0.1 s every 10 s for 500 s   

 
Table 4: Experimental details for the multiple-grain K-feldspar experiments performed in this study. 

 

 
Figure 3: a) The pIRIR signal recorded during the pulsed 0.1 s IR LED measurements every 10 s for 500 s (Table 4, 

step 6a) and the continuous IR LED measurement (Table 4, step 5b). Both datasets have been fitted with an 

exponential function. b) The exponential fit from the pulsed IR LED measurements as presented in Fig. 3a is 

subtracted from the continuous IR LED measurement to determine the reduction in signal that can be attributed to 

the effects of the prolonged heating at 290 °C. The reduction in signal is presented in absolute counts (left y-axis) 

and as a percentage of the signal in the first 0.1 s of IR stimulation (right y-axis). The dashed line marks the 

calculated reduction in signal (1,016 cts / 0.1 s, 10 %) after holding the disc for 90 s at 290 °C as an example of 

what is typical during routine dating measurements. 

 

 

period of 500 s. In both cases it is expected that the 

pIRIR signal will decrease due to optical eviction of 

charge, but if thermal depletion is also significant 

then the pulsed pIRIR data set collected over a longer 

period of time should show a greater decrease in 

intensity.  

  

Reduction in signal-intensity when grains are held at 

an elevated temperature 

   The pIRIR290 signals measured for the multiple-

grain aliquot during the pulsed (experiment 1) and 

continuous (experiment 2) stimulation measurements 

are shown in Fig. 3a; each dataset is fitted with an 

exponential function. The reduction in signal 

attributed to holding the multiple-grain aliquot at an 

elevated temperature was determined by subtracting 

the reduction in the pIRIR290 signal measured during 

the continuous stimulation (experiment 2) from the 

reduction in the pIRIR290 signal measured during the 

pulsed stimulation measurements (experiment 1). The 

subtracted data are presented in Fig. 3b as absolute 

counts (left y-axis) and as a percentage of the signal 

in the first 0.1 s of IR stimulation (right y-axis). Fig. 

3b demonstrates that there is an exponential reduction  
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pIRIR measurement Disc location time (min:sec) 

Ln 03:44 

Tn 01:12 

Lx (0 Gy) 01:14 

Tx (0 Gy) 02:06 

Lx (24 Gy) 01:13 

Tx (24 Gy) 01:13 

Lx (48 Gy) 01:19 

Tx (48 Gy) 01:11 

Lx (96 Gy) 01:13 

Tx (96 Gy) 01:14 

Lx (0 Gy) 01:12 

Tx (0 Gy) 01:13 

Lx (24 Gy) 01:11 

Tx (24 Gy) 01:12 

Mean ± st. dev. 01:12 ± 00:36 

 

Table 5: Periods of time it took the single-grain 

measurement system to locate the single-grain disc 

during a typical dating sequence using the pIRIR 

signal. 

 
in signal caused by thermal depletion of the pIRIR 

signal at 290 °C where after 300 s (5 minutes) the 

signal has depleted by ~2000 cts / 0.1 s (~20 % of the 

initial 0.1 s of signal). Beyond 300 s the signal does 

not appear to deplete any further. The typical time 

taken for locating a single grain disc (~ 90 s) is 

marked on Fig. 3b. The calculated reduction in signal 

after holding the disc for 90 s at 290 °C was ~1000 

cts / 0.1 s (~10 % of the initial 0.1 s of signal). Thus, 

these experiments show that the pIRIR signal-

intensity measured for K-feldspar grains was 

thermally depleted when the grains were held at an 

elevated temperature. 

 

Implications for single-grain dating of K-feldspars 

   The thermal depletion of the pIRIR signal when K-

feldspar grains are held at elevated temperatures has 

important implications for single-grain analysis as the 

time it takes for the single-grain system to locate each 

disc prior to each Lx and Tx measurement is not 

constant throughout the measurement sequence. 

Table 5 presents an example of the different disc 

location times recorded throughout a typical dating 

sequence using the pIRIR signal. If the single-grain 

disc is held at an elevated temperature during the disc 

location, the pIRIR signals are thermally depleted for 

different periods of time throughout the sequence. 

Thus, the pIRIR signals measured are not comparable 

for each Ln, Tn, Lx and Tx measurement. Moreover, 

the single-grain measurement system typically finds 

it   most  difficult  to  locate   the  disc  during  the  Ln  
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Figure 4: Examples of the initial 0.5 s of Lx and Tx 

decay curves measured during the reproducibility 

experiments performed with the disc location 

temperature at 290 °C and room temperature. Grain 

(a) gives the best reproducibility estimate, and is 

consistent between the experiments using disc 

location temperatures of 290 °C (1.0 %) and room 

temperature (1.3 %). In contrast, the reproducibility 

of grain (b) improves from 11.5 % to 1.7 % when 

changing the temperature of disc location from 290 

°C to room temperature. 

 

 

measurement (as shown in Table 5). Thus, it is likely 

that the Ln measurement is not comparable to the 

subsequent Lx and Tx measurements performed to 

construct the dose-response curve and provide 

sensitivity-correction.  

   Figure 4 shows two examples of the first 0.5 s of 

the Lx and Tx pIRIR290 decay curves measured for 

two grains (denoted grains a and b) during the 

reproducibility experiments performed using disc 

location temperatures of 290 °C and room 

temperature. Grain (a) gave the lowest reproducibility 

estimate, and this did not improve when the disc 

location temperature was reduced to room 

temperature. Grain (b) gave a reproducibility estimate 

of 11.5 % when the disc location temperature was 

performed at 290 °C, but this fell to 1.7 % when disc 

location was performed at room temperature. The 

decay curves measured for grain (a) using disc 

location temperatures of 290 °C were generally 
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slightly lower intensity than the decay curves 

measured when the disc was repeatedly located at 

room temperature, but both sets of decay curves are 

very similar in shape. In comparison, the decay 

curves measured for grain (b) using disc location 

temperatures of 290 °C were more varied and 

dimmer than the decay curves measured when the 

disc was located at room temperature.  

   The decay curves shown for both grains (a) and (b) 

support the hypothesis that the pIRIR signals of the 

grains were thermally depleted for different durations 

of time for the Lx and Tx measurements when the disc 

location was performed at 290 °C. Comparing the 

different behaviours between grain (a) and (b) 

suggests that this effect was more pronounced in 

some grains in comparison to others; thus, the pIRIR 

signals of some of the K-feldspar grains were more 

thermally-dependent than other grains. Locating the 

discs at room temperature during single-grain dating 

can circumvent the issues associated with grain-to-

grain variability in the thermal erosion of the pIRIR 

signal during disc location. Performing the disc 

location at room temperature should therefore be a 

preferred approach for all routine single-grain dating 

of sedimentary coarse-grained K-feldspar samples. 

 

Replacing the IR laser with IR LEDs for bleaching 

The pIRIR protocol typically incorporates two steps 

where IR stimulation is used to bleach the sample; 

one at 60 °C (step 3, Table 1) to remove the influence 

of any unstable IR60 signal prior to the elevated 

temperature stimulation (i.e. 225 °C or 290 °C), and a 

second at an elevated temperature (i.e. 290 °C or 330 

°C, step 9, Table 1) to prevent charge transfer 

between SAR cycles. The experiments performed 

using the pIRIR protocol in this study compared the 

difference between using the focussed IR laser and 

the IR LEDs for these two bleaching steps. Table 2 

presents the mean, standard error, and range in 

measurement reproducibility estimates for the 

individual grains analysed. The mean measurement 

reproducibility reduced from 4.7 ± 0.4 % to 2.8 ± 0.4 

% for the pIRIR225 signal, and from 3.6 ± 0.4 % to 

2.6 ± 0.3 % for the pIRIR290 signal when using the IR 

LEDs to bleach the grains instead of the IR laser. The 

measurement reproducibility measured after 

modifying the pIRIR225 and pIRIR290 protocols are 

now comparable with that of the IRSL signal in this 

study and those published for the green laser (2.5 ± 

0.3 %, Thomsen et al. 2005) and the IR laser at 50 °C 

(2.4 %, Trauerstein et al. 2012).  

   Figure 2b presents the grains as a function of 

measurement reproducibility estimates calculated for 

the pIRIR225 (circles) and pIRIR290 (triangles) signals 

using the IR laser (closed, solid line) and IR LEDs 

(open, dashed line) for bleaching during the 

measurement protocol. Histograms of the single-

grain populations for the pIRIR225 (top) and pIRIR290 

(bottom) signals plot the percentage of grains as a 

function of the measurement reproducibility and are 

also shown as inserts in Fig. 2b. Fig. 2b demonstrates 

the large improvement in the individual estimates of 

measurement reproducibility for the single-grain 

population when the IR LEDs are used for bleaching 

in the pIRIR protocol instead of the IR laser. The 

range in individual grain measurement 

reproducibility for the pIRIR225 (0.3 – 10.9 %) and 

pIRIR290 (0.2 – 8.2 %) is now comparable to the IR60 

measurements in this study (0.3 – 10.0 %). 

 

Conclusion 

   The Risø single-grain measurement system can be 

optimised to improve the reproducibility of the 

single-grain measurement system using the pIRIR 

signal of K-feldspars, and now provides estimates 

comparable to published single-grain quartz (Jacobs 

et al. 2006; Thomsen et al. 2005) and IR50 K-feldspar 

measurements (Trauerstein et al. 2012). Reducing the 

disc location temperature during pIRIR 

measurements from an elevated temperature (225 °C 

or 290 °C) to room temperature improves the 

measurement reproducibility by an average of ~3 % 

for the single-grain population. In addition, the use of 

IR LEDs instead of the IR laser to perform the 

bleaching at 60 °C and at elevated temperatures at the 

end of each SAR cycle improved the measurement 

reproducibility further to the estimates of 2.8 ± 0.3 % 

and 2.6 ± 0.3 % for the pIRIR225 and pIRIR290 signal, 

respectively. Both adaptations to the measurement of 

single-grain K-feldspars using the pIRIR signal are 

demonstrated to optimise the reproducibility of the 

single-grain measurement system; thus, the authors 

recommend that similar experiments are performed 

for individual readers to quantify the reproducibility 

of the equipment and measurement protocol used for 

single-grain dating. 
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   Tian Shan is one of the most important orogenic 

belts in central Asia. It has been reactivated as a 

result of the Cenozoic India-Eurasia collision. Dating 

of the late Cenozoic tectonic deformation of Tian 

Shan and its piedmonts is important for 

understanding the mountain building as well as 

evaluating seismic hazards in the region. This study 

is focused on the applications of optical dating to the 

late Quaternary uplift and thrust activity along Manas 

River, in the northern piedmont of the Tian Shan, 

China.  

   The sediments on river terraces were dated with 

optical dating. The elevations were measured with the 

kinematic global position system (GPS). The results 

suggest that two phases can be identified according to 

the significantly different river incision rates. One 

phase was from ~20 ka to ~4.8 ka, with a much 

slower incision rate of ~ 2.2 ± 0.6 mm/yr. The other 

phase was from ~4.8 ka to present, with a faster 

incision rate of ~ 13.5 ± 0.6 mm/yr. The accelerated 

incision rate of Manas River was mainly attributed to 

the tectonic forces, suggesting that the tectonic uplift 

was significantly intensified since ~4.8 ka in the 

northern piedmont of Tian Shan.  

   The study region has suffered from multiple thrust 

activities during the late Quaternary, which led to the 

intensively deformations of the river terraces. By 

studying the deformed terraces, I evaluated the timing 

of the past thrust activities as well as the vertical slip 

rate of the thrust faults. The results demonstrated that 

the thrust activity intensified during the late 

Holocene, as manifested by the more frequent thrust 

activities and higher vertical slip rates.   

   Both quartz and potassium feldspar can be as 

dosimeters for optical dating of sediments. However, 

quartz OSL is sometimes seriously impeded with 

problems such as very dim signals and insufficient 

bleaching problems. K-feldspar has attractive 

advantages over quartz, despite of problem of 

anomalous fading. K-feldspar was explored in this 

study, by investigating the relationship between the 

infrared stimulated luminescence (IRSL) and blue 

light stimulated luminescence (BLSL) signals. For 

IRSL and BLSL at 60 °C, it was suggested that most 

of the IRSL could be bleached by blue light (BL), 

while the BLSL could only be partially bleached by 

infrared (IR) stimulation. Besides, the fast and 

medium components of BLSL were mainly 

associated with the IRSL. If IR stimulation 

temperature was raised from 60 to 200 °C, at least 

two portions of the IRSL signals at 200 °C were 

observed. One portion could be bleached by BL at 60 

°C and the other portion was hardly bleached by BL 

at 60 °C. Dating of K-feldspar from the various 

signals provided cross-checking for the reliability of 

quartz OSL for dating sedimentary samples. 
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   This study presents the first application of optically 

stimulated luminescence (OSL) dating in the 

lowlands of Pakistan. More specifically, the Pakistani 

section of the Ghaggar-Hakra palaeochannel is dated 

for the first time, having been the subject of research 

for over a century. The Ghaggar-Hakra is associated 

with a dense concentration of Mature and Late 

Harappan archaeological sites. The Mature Harappan 

are hypothesised to have collapsed at ~3.9 ka, and it 

has been hypothesised that changing fluvial activity 

and climatic variability were key factors in the 

demise of this civilisation. This thesis aims to use 

OSL dating to develop a chronology of fluvial 

activity for the palaeochannel and to establish 

whether there is a temporal link between changing 

fluvial activity and climatic variability. The 

chronology is also compared with records of 

archaeological change to ascertain whether changing 
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fluvial activity contributed to the Mature Harappan 

collapse.  

   The majority of work presented in this thesis is 

concerned with the development of an accurate 

geochronological framework using OSL dating. The 

fast ratio is developed as a means for assessing the 

dominance of the fast component in the initial part of 

a quartz OSL signal and range-finder OSL dating is 

developed as a protocol for rapid age estimation 

using the quartz OSL signal, providing age estimates 

with uncertainties within 20%. Equivalent dose 

calculation using statistical models is discussed and 

the extent of incomplete bleaching in the dataset is 

considered. OSL ages dating predominantly from the 

Holocene are presented. 

   Based on the OSL ages calculated, strengthened 

fluvial activity in the Ghaggar-Hakra palaeochannel 

during the early and mid-Holocene is observed. Flow 

recession up-channel during the mid-Holocene is 

inferred, and a hiatus in fluvial deposition in the 

channel is observed between 4.5 and 1.4 ka. Changes 

in fluvial activity in the Ghaggar-Hakra are driven by 

the intensity of the Asian Monsoon, which fluctuates 

during the Holocene. Changing fluvial activity 

coincides with documented archaeological change 

and it is concluded that changing fluvial activity 

driven by climate was a significant factor in the 

collapse of the Mature Harappan at ~3.9 ka. 
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   The accurate dating of palaeoflood deposits plays a 

key role in the understanding of river flooding events, 

which are one of the main natural hazards related to 

climate, causing severe damage on mankind’s life. 

The latest developments in the measuring and data 

analyses applied to optically stimulated luminescence 

dating (OSL) have made this technique highly 

reliable to assess chronologies for Quaternary 

processes. But in some cases OSL can be hampered 

and the achievement of accurate ages becomes a 

challenge. This is the case of young flash-flood 

deposits which are likely to be affected by incomplete 

bleaching and in which any extrinsic factor could 

lead to a dramatic misestimate of the burial age.  

   Flood sediments from four rivers of the Iberian 

Peninsula (Guadalentín, Rambla de la Viuda, Huebra 

and Duero) have been sampled, covering a wide 

variety of environments for this thesis. A sequence of 

eight modern (40-1000 years) flash-flood deposits, 

potentially affected by incomplete bleaching, with 

available age control from historical records and 

radiocarbon ages has been used as reference values. 

Results from measurement of small (~30 grains) 

multi-grain aliquots have been compared to those 

derived from single grains. Burial ages have been 

estimated by using descriptive and robust statistics, 

the Central Age Model (CAM), Minimum Age 

Model (MAM) and Internal-External Consistency 

Criteria (IEU). A data transformation has been 

proposed in order to apply CAM and MAM models 

to dose distributions containing zero and negative 

values. All approaches have been applied to both, 

multi-grain and single grain doses.  

   The effect of the assumed over-dispersion on the 

burial dose estimation has been studied in detail 

finding a moderate effect when applying IEU 

approach and a very strong effect when using MAM 

model. Over-dispersion has been assigned based on 

dose recovery experiments measured on 

bleached/gamma dosed samples. 

   Comparison of the different OSL burial dose 

estimates with the independent age control indicates 

that best ages are achieved when using IEU approach. 

Consistent results are found for small multi-grain 

aliquots and single grains, showing that small (~30 

grains) multi-grain aliquots in combination with 

minimum age models (i.e. IEU, MAM) are suitable 

for age estimation even in samples with high 

percentage (up to  of incompletely bleached grains. 

Achieved conclusions have been applied to date the 

samples from the remaining three rivers. In all cases 

the estimated ages are consistent with the 

stratigraphy. 
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   New applications of the optically stimulated 

luminescence (OSL) dating were carried out with the 

aim of understanding late Quaternary activities for 

the Tibetan Plateau. This included studying the slip 

rate of the Altyn Tagh Fault, northeast Tibetan 

Plateau, and revealing the environmental changes 

derived from large inland lake’s evolution, central 

south Tibet. 

   Two deflected streams across the Altyn Tagh Fault 

close to Aksay (39°24.572’N, 94°16.012’E) were 

investigated. Geomorphological analysis suggests 

that loess covering deflected stream banks has 

recorded past faulting events. A conceptual model is 

proposed illustrating the relationship. OSL dating of 

sixteen loess samples at both streams support the 

model, suggesting the loess is deposited episodically 

after fault strikes and subsequent channel wall 

refreshment. The age and offset indicate a slip rate of 

11 ±2 mm/yr for this part of the Altyn Tagh Fault.  

   Another river section near Aksay was also 

investigated for the slip rate information. Two risers 

between three terraces are clearly offset; OSL dating 

of loess covering terrace surfaces yielded terrace 

ages. Using the upper-terrace age to represent riser 

displacement duration, the rate is estimated to be 12 

±1 mm/yr. The result suggests that using upper 

terrace is more suitable in this region. Notably, 

though, the slow rate is at odds with proposals that 

assume high-speed extrusion (~23 mm/year) of the 

Tibetan Plateau being accommodated by the Altyn 

Tagh Fault. 

   Palaeo-shorelines around the third largest lake in 

Tibet, Zhari Namco, were for the first time 

systematically investigated using OSL dating. 

Twenty-two sediment samples from eleven shorelines 

indicate that the water level has dropped ~128 m and 

the lake has undergone stepwise shrinkage since 8.2 

ka. Digital elevation model calculation indicates the 

lake has shrunk from 4605 km
2
 in size at 8.2 ka to 

996 km
2
 at present, which is equivalent to ~300 km

3
 

of water. This implies a significant reduction in 

precipitation over the past 8.2 ka, a result of 

weakening Indian Monsoon or a shift of monsoon 

circulation path. The result is consistent with other 

lake-core, ice-core climate proxies and solar 

insolation changes, implying the dominance of a 

weakening Indian Monsoon over central Tibet in the 

Holocene. Using the elevation of the highest 

shoreline of the four largest lakes in Tibet, the early 

Holocene Pan-lake hypothesis is proposed for the 

central Tibet. 

   In addition to these applications of OSL dating, 

technical studies on sensitivity changes and residual 

doses have been carried out for potassium rich 

feldspar (K-feldspar). Recent development of infrared 

stimulated luminescence (IRSL) signals from K-

feldspar has shown great potential for extending the 

datable range for OSL dating. Sensitivity changes and 

residual doses of post-IR IRSL and multi-elevated -

temperature post-IR IRSL protocols for K-feldspar 

were studied. A sensitivity decrease is observed after 

adopting a high temperature IRSL. IRSL signals 

stimulated at high temperature are found to contain 

large residual doses. The residual dose rises with 

stimulation time, suggesting that the initial part of 

IRSL signals contains more easy-to-bleach signals 

comparing with the later part. 
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   The application of optically stimulated 

luminescence (OSL) dating to desert sand dunes has 

allowed accumulation histories to be used as tools to 

infer past environmental change. In response to issues 

facing the interpretation of these records, two 

research questions are addressed in this thesis. (i) Are 

dune chronologies representative of dune 

stratigraphies? And (ii) how can we most 

appropriately interpret dune chronologies as records 

of Quaternary environmental conditions?  

   Five dune profiles were sampled for OSL dating at 

two sites in the northeastern Rub’ al Khali in the 

southern Arabian Peninsula. The visible stratigraphy 
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was used to guide sampling for three of the profiles 

and the effectiveness of this approach is assessed. A 

key finding is that bounding surfaces are not always 

identifiable as chronological hiatuses by OSL dating, 

given the level of precision that can be achieved. 

Using hierarchical relationships visible in two-

dimensional exposures is therefore not guaranteed to 

identify the depositional units necessary to 

reconstruct dune histories.  

   Comparison of the depositional records from three 

sampled profiles shows that there is significant 

variability in chronologies at both the dune and 

dunefield scales. In light of these findings, the use of 

‘range-finder’ OSL dating was investigated as a 

method of increasing sample throughput in the 

laboratory. It is concluded that the use of partially 

prepared samples and shortened measurement 

techniques can be used to rapidly assess the 

chronological context of samples and target those 

units most useful in constructing dune profiles. 

   A new method of presenting dunefield OSL 

datasets as net accumulation rates, incorporating 

accumulation thickness rather than relying on the 

frequency of ages, is presented. Within the last 30 ka, 

regional accumulation and preservation occurred at 

~30-26, 22.5-18, 16-9, 6-2.7, 2.1-1.6, 1.1 and 0.7 ka. 

In conjunction with numerical model results and a 

review of other palaeoenvironmental archives, the 

regional aeolian record is interpreted as a response to 

changing forcing factors. High rates of net 

accumulation between ~16-9 ka are attributed to 

coeval increases in sediment supply and transport 

capacity. A hiatus in accumulation between ~9-6 ka 

is interpreted as a result of reduced sediment 

availability due to high moisture levels. The 

importance of both external forcing factors and local 

controls on dune accumulation processes is 

recognised, and therefore the importance of sampling 

at multiple locations to distinguish these factors is 

emphasised. 
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Conference Announcements  
 

 

LumiDoz 8 

International Conference 

on Luminescence and ESR 

Dosimetry  

August 27 – 29, 2014 

   Institute of Nuclear Sciences, Ankara University 

(Turkey) is inviting you to participate to International 

Conference on Luminescence and ESR Dosimetry 

(LumiDoz 8). 

   The conference will take place at the Institute of 

Nuclear Sciences, Ankara University, in Ankara-

Turkey, between 27
th

 and 29
th

 August 2014.  

   The conference hopes to attract researchers with 

fundamental and applied research presentations 

covering luminescence mechanisms, new 

luminescent materials, applied radiation physics, 

dosimetry, detection of irradiated foods, 

archaeological and geological dating and other 

related issues and technological applications. The 

conference is bilingual, both English and Turkish 

contributions are welcome. 

   Proceedings of both oral and poster presentations –

those eligible for peer-reviewed publication- will be 

published in Journal of Nuclear Science (limited to 

one first-author paper per active participant). 

   The web page of the conference is 

http://lumidoz.en.ankara.edu.tr/. You may find 

detailed information about registration, 

accommodation and deadlines here. You can also 

reach us by email at lumidoz@ankara.edu.tr.  

 

On behalf of the Organising Committee of 

Lumidoz8. 

 

 

http://lumidoz.en.ankara.edu.tr/
mailto:lumidoz@ankara.edu.tr
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Submission of articles to 

Ancient TL 

 
Reviewing System 
In order to ensure acceptable standards and minimize delay in 

publication, a modification of the conventional refereeing 

system has been devised for Ancient TL: 

 

Articles can be sent directly by authors to a member of the 

Reviewers Panel chosen on the basis of the subject matter, but 

who is not in any of the authors’ laboratories. At the 

discretion of the Editor, reviewers who are not listed in the 

Panel may be used. 

 

The reviewing system aims to encourage direct dialogue 

between author and reviewer. The Editor should be kept 

advised of the progress of articles under review by sending him 

copies of all correspondence. He is available for advice where 

reviewing difficulties have arisen. Authors whose mother 

tongue is not English are required to have their manuscript 

revised for English before submitting it. 

 

We ask reviewers to specify (where required) the minimum of 

revision that is consistent with achieving a clear explanation of 

the subject of the paper, the emphasis being on rapid 

publication; reviewers are encouraged to make a brief written 

comment for publication at the end of the paper. Where a 

contribution is judged not to meet an adequate standard without 

substantial modification, the author will be advised that the 

contribution is not suitable for publication. Articles that are not 

considered to be of sufficient interest may also be rejected. 

 

Procedures 
1. Articles should be submitted to an appropriate member of 

the Reviewing Panel or Editorial Board, chosen on the basis 

of the subject matter, but who is not in any of the authors’ 

laboratories. 

2. Articles should not normally exceed the equivalent of 5000 

words inclusive of diagrams, tables and references. Greater 

space will be appropriate for certain topics; for these the 

Editor should first be consulted.  

Short notes and letters are also invited. These should not 

exceed two printed pages in Ancient TL, including diagrams, 

tables and references (equivalent to ~1400 words of text). 

3. Diagrams and labels should be ready for direct reproduction 

and not normally exceed 12 cm wide by 10 cm high. Where 

possible, high quality electronic versions of figures should 

be submitted. Separate figure captions should be supplied. 

Inappropriately scaled drawings and labels will be returned 

for alteration. 

4. Authors are asked to submit the paper, including diagrams, 

to the Reviewer and a duplicate copy to the Editor. 

    The final version of the text must be submitted to the Editor 

electronically using a standard format (Microsoft Word for 

PC is currently used for producing Ancient TL). Electronic 

copies of Diagrams and Tables should also be submitted. 

5. Upon receipt of an article, the Editor will send an 

acknowledgement to the author. If the Reviewer is unable to 
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the author and advise the Editor. 
 

 

 

 

 

Requirements under various situations 
When agreement concerning an article has been reached: 

The Editor should receive a copy of the final version of the 

paper, both as hard copy and electronically. The Reviewer 

should send their final decision, including comments for 

publication if any, to the Editor. 

 

If the article has not been rejected, but agreement on its final 

form cannot be reached or where there are protracted delays 

in the reviewing process: 

The Editor may request an assessment from the Reviewer and 

responsibility passes to the Editor. 

 

If the article is rejected: 

The Editor and author receive notification from the Reviewer, 

with an indication of the reason for rejection. 

 

Thesis abstracts are to be sent to the Editor and in principle do 

not need reviewing. However, authors are requested to make 

sure that the English is correct before submission. Thesis 

abstracts should not exceed 750 words, and figures and tables 

are not accepted. 

 

Advertising. Formal information on equipment can be 

published in Ancient TL. It should not exceed one printed 

page. Current charges are displayed on the website 

(http://www.aber.ac.uk/ancient-tl) 

 

Subscriptions to Ancient TL 

 
Ancient TL is published 2 times a year and is sent 

Airmail to subscribers outside the United Kingdom. 

While every attempt will be made to keep to publication 

schedule, the Editorial Board may need to alter the 

number and frequency of issues, depending on the 

number of available articles which have been accepted 

by reviewers. 

 

The subscription rate for 2014 is £15 for individual 

subscribers and £25 for Institutional subscription, plus 

any taxes where required. Payment must be in pounds 

sterling. Enquiries and orders must be sent to the Editor. 

Payment may be by cheques, made payable to 

‘Aberystwyth University’, by credit/debit cards or by 

bank transfers. Further information on subscriptions is 
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