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Relevance of two-point statistics in connection with SAR imagery textural characterization,  in 

particular of the Fourier spectral analysis and the autocorrelation function (ACF), was pointed out 

in a seminal work published in the late 80s [1].  This work was targeted to supervised classification, 

where textural class parameters were estimated from SAR spatial statistics. Analysis was carried out 

based on stationary Rayleigh statistics for the envelope of the received field, and under the 

condition of a delta correlated fading component. In this framework, a method was derived for the 

estimation of the underlying radar cross section ACF from experimental data, whilst no specific 

model for the surface fluctuations was proposed. This line of research was extended by a theoretical 

model for non-Rayleigh SAR scattering statistics, covering the case of  correlations between  

scatterers in the resolution cell (or fluctuating cross section) , and finite illumination window [2][3]. 

The surface fluctuations were described by a Gamma distribution and a Lorentzian spectrum 

(exponential ACF). This model is particularly relevant when imaging forest at the high resolution 

(order of 1 to 3 meters) afforded by some of currently deployed space-borne SAR instruments. 

These contributions were the springboard over which interest in space-frequency analysis of SAR 

backscatter took momentum [4][5][6][7]. 



Wavelet frame spatial statistical measures are rooted in the groundwork established by the classical 

Fourier ACF analysis adopted in those research works, but extend it in several respects: by enabling 

space-scale analysis (through good localization in the space-frequency domain); by the capability of 

dealing with non-stationary processes; providing statistically better and computationally more 

efficient estimators. The reader is referred to [8] for a discussion on this topic.   It appears therefore 

interesting to establish, for those random processes described by the models mentioned above, the 

connection between the wavelet space-scale statistics (wavelet variance and covariance) and the 

ACF based characterization. 

For the purpose, analytical and numerical derivations were undertaken to illustrate the response of 

the wavelet scaling signatures to given correlation properties of the input spatial random field 

(SRF), including those assumed in the models in [2].  

Analysis is carried out in the continuous scale-space assuming a signal representation provided by a 

wavelet frame basis defined in [16]. The wavelet is the first derivative of a box spline of order 3, 

with Fourier transform: 
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The wavelet transform is: 
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The normalization 𝑠−1/2 preserves the 𝐿2norms of the dilated wavelets. 

 The wavelet variance is: 
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Where 𝜀 is the estimation interval. When computed globally over the whole signal the wavelet 

variance (3) is equivalent to the energy spectrum 𝐸𝑓(𝑘) provided by the Fourier transform. 

The wavelet operator is linear. Since the transform (2) is a convolution of the signal with the mother 

wavelet dilated by s, in the Fourier domain the transform at scale s is equivalent to: 



𝑊𝑓� = 𝑠−1/2𝑤�𝑠(𝜔)ℑ𝑓(𝜔)  (4) 

Where 𝑤�𝑠(𝜔) = 𝑠𝑤�(𝑠𝑠) is the Fourier transform of the dilated wavelet at scale s, with 𝑤�(𝜔) given 

in (1), and ℑ𝑓 is the Fourier transform of the signal. 

Given an input noise process with known spectral properties, the spectrum of the signal at the 

output of a linear system whose transfer function is given by the wavelet Fourier spectrum is [14]: 
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Where 𝑆𝑓 is the spectrum of signal f. 

The wavelet variance (3)  can be finally computed from the ACF of the output signal at lag 0: 

〈𝑤(𝑠)2〉 = ℛ(τ = 0) = ℑ−1(S(𝜔, 𝑠))|𝜏=0 = 1
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Where S(𝜔) = 𝑊𝑓�𝑊𝑓�
∗, and ℛ(τ) is the ACF of the stationary process. 

Regarding the wavelet co-variance, let us consider the wavelet transform of two signals 𝑊𝑋 ,𝑊𝑦. 

The cross-spectrum of the transforms from (4) is: 
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Therefore the cross-correlation function (CCF) of the wavelet transform is linked to the cross-

correlation of the input signals through the dilated wavelet frequency response. Finally the wavelet 

covariance is computed from the CCF at lag 0: 

〈𝑤𝑋𝑤𝑌〉(s) = ℑ−1𝜏=0 �𝑠−1|𝑤�|𝑠
2 ℑ𝑋(𝑋) ℑ𝑌(𝑌)� (9) 

These results will be used next to derive the wavelet variance response in a number of test cases 

consisting of input random processes with different correlation properties. 

1) White noise (e.g. delta correlated speckle statistics with constant radar reflectivity) 

ℛ(τ) = 〈𝐼〉2𝛿(𝜏) (10) 

Γ(𝜔) = 〈𝐼〉2  (11) 
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The wavelet variance is scale independent. 



 

2)  1/f process(e.g. fractal surface [9][10][11]) 
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〈𝑤(𝑠)2〉 = 𝑐𝑐𝑐𝑐𝑐 〈𝐼〉2 𝑠2 𝑓𝑓𝑓 𝛽 = 2  (15) 

The dependence of the wavelet variance with scale is linear in log-log scale, with the first derivative 

proportional to the spectral exponent. 

3) Correlated surface (Gamma distributed RCS) with exponential ACF (Lorentzian spectrum) 

[2] 

ℛ(τ) = 〈𝐼〉2 + 〈𝐼〉2

𝜐
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Where 〈𝐼〉 is the mean scattered intensity, 𝜈 is the order parameter of the Gamma distribution, 𝛽 is 

the inverse correlation length. 

𝑆(𝜔) = 〈𝐼2〉𝛽
𝛽2+𝜔2 + 2𝜋〈𝐼〉2𝛿(𝜔)  (17) 

Where 𝛿(𝑥) is the Dirac distribution. 

The integral (6) (wavelet variance) was evaluated numerically as a function of scale and for 

parameters 𝜐 = 0.375 and 𝛽 = 0.1, 0.4, 0.8. The resulting curves are shown in the log-log graph in 

Fig.1. 



 

Fig. 1 Graph of the wavelet variance for a Gamma distributed RCS with exponential ACF. The input random 

process model was parametrized with inverse correlation length 𝜷 = 𝟎.𝟏,𝟎.𝟒,𝟎.𝟖 and order parameter 𝝊 =

𝟎.𝟑𝟑𝟑. The signatures for the three cases are represented, respectively,  by red, green and blue (circle, square 

and diamond symbols) solid lines. Dotted lines mark the tangent lines to 〈𝒘𝟐〉 at scale s=1, and the asymptotic 

values at large scales. 

The red (circles), the green  (squares) and the blue  (diamond) solid lines correspond respectively to 

the inverse correlation length values 𝛽 = 0.1, 0.4, 0.8. The dotted lines mark the tangent of the 

curve at scale s=1, and the asymptotic values of the wavelet variance. 

Let us consider the derivative of the wavelet variance at scale s=1.  The wavelet spectrum at scale s 

can be approximated by: 
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The derivative of the wavelet variance at scale 1, this corresponding to ℜ(0)′ , can be derived from 

the derivative under the integral sign in (6). Retaining only first order terms in 𝜔 in the derivative of 

(18) : 
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For 𝛽 ≤ 1 the dependence of the signature slope at s=1 is linear in 𝛽 and proportional to the signal 

intensity second moment. Therefore 〈𝑤(1)2〉′ 𝑎𝑎𝑎 〈𝑤(1)2〉 supply information on the RCS Γ 

distribution order parameter, and on the ACF inverse correlation length. 

The asymptotic value of the wavelet variance can be derived by considering that at large scales the 

input signal becomes uncorrelated with spectrum 𝐺(𝜔) = 〈𝐼2〉 + 〈𝐼〉2. The limit under the integral 

sign in (6) is: 
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Therefore the asymptotic value of the wavelet variance provides information on the first two 

moments of intensity. 

4) Cross-correlation between two stationary processes with exponential ACFs 

Numerical evaluation of integral (9) was performed assuming the two stationary input processes 

being characterized by exponential ACFs, and an exponential CCF, with given parameters. 

Moreover, the Schwartz inequality condition is imposed on the second moments of intensity: 

|〈𝐼1𝐼2〉|2 ≤ 〈𝐼12〉〈𝐼22〉  (21) 

The resulting wavelet co-variance was also normalized by the wavelet variance. 

Test cases are considered with processes with equal backscatter intensity and order parameters, and 

ACFs and CCF with different inverse correlation lengths, these being: 

  𝛽1𝛽2 = (0.8, 0.1) (0.4, 0.1) (0.1, 0.1) 𝛾 = (0.5, 0.2, 0.1)  

Where 𝛽1𝛽2 are the inverse correlation lengths of the ACFs and 𝛾 is the inverse correlation length 

of the CCF. 

Results are reported in Fig. 2, with the red, green and blue lines corresponding to the cases listed 

above. Notice that the normalized wavelet variance depends both on the CCF between the two 

processes (through integral (9)), and on the ACFs of each process, these being reflected in the 

normalizing variances in the denominator.  Longer CCF correlation length tends to flatten the 

scaling dependence of the wavelet covariance (see blue line). With shorter CCF correlation length, 



the dependence on the ACFs weighs in; the wavelet covariance decreases more rapidly with scale 

(i.e. decorrelates more) as a function of the difference between the ACFs correlation lengths. In 

other words, the wavelet covariance provides, in this case, a measure of the textural diversity 

between the two processes. 

 

 

Fig. 2 Normalized wavelet co-variance as a function of scale. Three cases were analyzed. Parameters of input 

processes’ model were: 𝜷𝟏𝜷𝟐 = (𝟎.𝟖,𝟎.𝟏) (𝟎.𝟒,𝟎.𝟏) (𝟎.𝟏,𝟎.𝟏) for the ACFs inverse correlation lengths, and 

𝜸 = (𝟎.𝟓,𝟎.𝟐,𝟎.𝟏) for the CCF inverse correlation length. The three cases correspond to the red, greena and 

blue lines (circle, square, diamond symbols). 

5) Effects due to coherent imaging and illumination beam size 

In the previous analysis the connection was established between the wavelet variance scaling and 

the correlation properties of the illuminated surface (i.e. the RCS). In other words, we have assumed 

a situation where perfect reconstruction of RCS had been somehow accomplished before estimating 

the wavelet statistics. We consider now the case where the coherent interaction of the scattering 

elements and the illumination beam finite size are included in the model of the backscattered 

intensity ACF,  as it was proposed  in the correlated K-distributed model in [12], [13 (3.8)]: 
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Where the illumination beam is assumed to have a Gaussian profile with 𝜎 being the 1/e width, 𝜈 is 

the order parameter of the K distribution, 𝛽 is the inverse correlation length. 

Numerical evaluation of the integral (6) using the intensity ACF (22) yields the wavelet variance 

signatures represented in Fig. 3.  Parameters were: 2𝜎 = 3,  𝜐 = 0.375 and 𝛽 = 0.01, 0.05, 0.1, 

these corresponding to the blue  (diamond), green (square) and red (circle) lines. 

 

Fig. 3 Wavelet variance signatures for a K-distributed clutter model including effects due to the instrument point 

spread function (PSF). The red, green, blue curves (circle, square, diamond symbols) correspond to cases with 

model parameters of : 𝟐𝟐 = 𝟑,  𝝊 = 𝟎.𝟑𝟑𝟑 and 𝜷 = 𝟎.𝟎𝟎,𝟎.𝟎𝟎,𝟎.𝟏. 

Information about the underlying RCS at short scales (s=1,4), i.e. within the instrument’s 

resolution,  is shadowed by the impulse response function of the instrument, and is therefore 

unobtainable. The RCS correlation length can still be estimated from the onset of the asymptotic 

value, but only within the region of scales outside the influence of the instrument PSF. 
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