FURTHER MATHEMATICS

Time allowed: 1 hour 30 minutes

- All answers (including any diagrams, graphs or sketches) should be written on paper, and scanned into a single PDF file. Graph paper is not required.
- Answer all questions in Section A and two questions from Section B.
- Candidates are permitted to use calculators, provided they comply with A level examining board regulations. They must be made available on request for inspection by invigilators, who are authorised to remove any suspect calculators.

Information and relevant formulas

- For motion in a circle of radius r, the transverse velocity is ωr, and the magnitude of the radial acceleration is $\omega^{2} r$, where ω is the angular speed.
- Statistical tables will be provided. Note that the tables refer to the right-hand tails of the distributions, that is, probabilities of the form $p=\mathbb{P}(X \geq x)$ where X is a random variable and x an upper percentage point of its distribution.
- If X is a discrete random variable with values x_{1}, \ldots, x_{n}, then the mean and variance of X are given by

$$
\mathrm{E}(X)=\sum_{i=1}^{n} x_{i} \mathrm{P}\left(X=x_{i}\right), \quad \operatorname{Var}(X)=\sum_{i=1}^{n} x_{i}^{2} \mathrm{P}\left(X=x_{i}\right)-\mathrm{E}(X)^{2} .
$$

- Formulas related to standard distributions (e.g. for probability, mean, and variance) can be found on the back page of the statistical tables.

Section A

1. Simplify the following expressions as far as possible, showing your workings.
(a) $\frac{34}{5 i+3}-\frac{11-7 i}{2+i}$
(b) $|(3 \mathbf{i}-2 \mathbf{k})-(\mathbf{i}+2 \mathbf{j}+\mathbf{k})|$
(c) $\left(\begin{array}{ll}3 & 2 \\ 2 & 2\end{array}\right)^{-1}\left(\begin{array}{cc}3 & -2 \\ -2 & 2\end{array}\right)$
2. Solve the equation $2 z+7 \bar{z}=5-3 i-z$, for the complex number z. (Here \bar{z} is the complex conjugate of z.)
3. Explain why the matrix $\left(\begin{array}{cc}3 & -2 \\ -9 & 6\end{array}\right)$ has no inverse.
4. Consider the complex numbers $z=\frac{1}{2}(\sqrt{3} i-1)$ and $w=z^{2}$.
(a) Express w in the form $r(\cos \theta+i \sin \theta)$ where $r>0$ and $-\pi \leq \theta \leq \pi$.[6 marks]
(b) Show that $w^{2}=z$.
(c) Find an integer n for which $z^{n}=1$, explaining your reasoning.
5. The complex number z satisfying $|z-3 i|=|z+1-i|$ is represented by the point $P(x, y)$ in an Argand diagram. Find the equation of the locus of P in terms of x and y, and interpret it geometrically.
6. Consider the quartic equation $x^{4}+4 x^{3}+11 x^{2}+34 x+130=0$.
(a) Let $z=2 i-3$. Simplify the expressions of z^{2}, z^{3}, and z^{4}, and hence show that z is a root of the above equation.
(b) Find the other three roots, explaining your method for each root.
7. Prove by mathematical induction that

$$
\left(\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right)^{n}=\left(\begin{array}{cc}
2^{n} & 3^{n}-2^{n} \\
0 & 3^{n}
\end{array}\right)
$$

for all positive integers n.
8. A quadratic polynomial $f(x)$ has real coefficients and $f^{\prime \prime}(0)=-2$. Given that the equation $f(x)=0$ has a non-real root z, find expressions for $f(0)$ and $f^{\prime}(0)$ in terms of z and \bar{z}.

Section B

9. Consider the points $A(1,1,1), B(2,0,3), C(5,1,2)$, and $D(4,2,0)$. Let Π be the plane containing A, B, and C.
(a) Find (in terms of $\mathbf{i}, \mathbf{j}, \mathbf{k}$) the vectors $\mathbf{A B}, \mathbf{B C}, \mathbf{C D}$, and DA. [2 marks]
(b) Find the equation of the plane Π in the form $\mathbf{r} \cdot \mathbf{n}=1$, and hence show that the point D lies in Π as well.
(c) Show that $A B C D$ is a rectangle on the plane Π.
(d) Find the vector equation of the line L perpendicular to the plane Π and intersecting it at the centre of the rectangle $A B C D$.
(e) Find the coordinates of a point P which lies on the line L determined in part (d) such that the triangle $A P B$ is equilateral.
[5 marks]
10. An object of mass m moves in a circle on a smooth horizontal surface, constrained by a light inextensible string of length l attached to a point at height h above the surface, as shown in the figure. The angular speed ω of the object remains constant throughout the motion, and the string is taut.
(a) Sketch a figure showing all the forces acting on the object, as well as the horizontal and vertical components of the tension force in the string. [4 marks]
(b) Show that the vertical component of the tension has magnitude $m \omega^{2} h$.
[7 marks]
(c) In the remaining calculations, let $h=20 \mathrm{~cm}$, and use the value $g=9.8 \mathrm{~ms}^{-2}$ for the gravitational acceleration.
(i) If the reaction force exerted on the object by the surface is 20% of the weight of the object (in magnitude), find the angular speed ω. [5 marks]
(ii) Find the largest value of ω for which the object remains on the surface.
[4 marks]

11. (a) The discrete random variable X has the following probability distribution:

x	1	2	3	4	5
$\mathrm{P}(X=x)$	0.2	0.3	0.2	a	b

Here, a and b are positive constants.
(i) Show that $a+b=0.3$.
(ii) Given that $\mathrm{E}(X)=2.8$, obtain a second equation involving a and b. Hence determine the value of a and the value of b.
(iii) Given that X_{1} and X_{2} are independent observations of the random variable X, determine $\mathrm{P}\left(X_{1}+X_{2} \leq 4\right)$, explaining your reasoning.
(b) Let N represent the number of buses passing a bus stop in one hour. We can model N as a Poisson random variable with rate parameter $\lambda=1.5$.
(i) Write down the mean and variance of N.
(ii) If $Y=3 N-4$, what are the mean and variance of Y ?
(iii) Using the appropriate formula for probabilities of the form $\mathrm{P}(N=k)$, calculate the probability that 3 or fewer buses are observed in a particular hour. Show your working clearly.
(iv) If N_{1}, N_{2} and N_{3} are the numbers of buses passing the stop between 9.00 am and 10.00 am , between 10.00am and 11.00 am and between 11.00 am and 12.00 pm respectively, what is the distribution of $M=N_{1}+N_{2}+N_{3}$, the number of buses passing between 9.00 am and 12.00 pm ?
(v) With M as in (iv), find $\mathrm{P}(M \geq 2)$, using either an appropriate formula or a probability table. Indicate clearly which method you used. [2 marks]

