

FURTHER MATHEMATICS

Time allowed: 1 hour 30 minutes

- All answers (including any diagrams, graphs or sketches) should be written on paper, and scanned into a **single** PDF file. Graph paper is not required.
- Answer **all** questions in Section A and **two** questions from Section B.
- Candidates are permitted to use calculators, provided they comply with A level examining board regulations. They must be made available on request for inspection by invigilators, who are authorised to remove any suspect calculators.

Information and relevant formulas

- For motion in a circle of radius r, the transverse velocity is ωr , and the magnitude of the radial acceleration is $\omega^2 r$, where ω is the angular speed.
- Statistical tables will be provided. Note that the tables refer to the **right-hand** tails of the distributions, that is, probabilities of the form $p = \mathbb{P}(X \ge x)$ where X is a random variable and x an **upper** percentage point of its distribution.
- If X is a discrete random variable with values x_1, \ldots, x_n , then the mean and variance of X are given by

$$E(X) = \sum_{i=1}^{n} x_i P(X = x_i),$$
 $Var(X) = \sum_{i=1}^{n} x_i^2 P(X = x_i) - E(X)^2.$

• Formulas related to standard distributions (e.g. for probability, mean, and variance) can be found on the back page of the statistical tables.

Section A

1. Simplify the following expressions as far as possible, showing your workings.

(a)
$$\frac{34}{5i+3} - \frac{11-7i}{2+i}$$
 [4 marks]

(b)
$$|(3\mathbf{i} - 2\mathbf{k}) - (\mathbf{i} + 2\mathbf{j} + \mathbf{k})|$$
 [3 marks]

(c)
$$\begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 3 & -2 \\ -2 & 2 \end{pmatrix}$$
 [4 marks]

2. Solve the equation $2z + 7\overline{z} = 5 - 3i - z$, for the complex number z. (Here \overline{z} is the complex conjugate of z.) [6 marks]

3. Explain why the matrix
$$\begin{pmatrix} 3 & -2 \\ -9 & 6 \end{pmatrix}$$
 has no inverse. [2 marks]

4. Consider the complex numbers $z = \frac{1}{2}(\sqrt{3}i - 1)$ and $w = z^2$.

- (a) Express w in the form $r(\cos \theta + i \sin \theta)$ where r > 0 and $-\pi \le \theta \le \pi$.[6 marks]
- (b) Show that $w^2 = z$. [2 marks]
- (c) Find an integer n for which $z^n = 1$, explaining your reasoning. [2 marks]
- 5. The complex number z satisfying |z 3i| = |z + 1 i| is represented by the point P(x, y) in an Argand diagram. Find the equation of the locus of P in terms of x and y, and interpret it geometrically. [6 marks]
- 6. Consider the quartic equation $x^4 + 4x^3 + 11x^2 + 34x + 130 = 0$.
 - (a) Let z = 2i 3. Simplify the expressions of z^2 , z^3 , and z^4 , and hence show that z is a root of the above equation. [4 marks]
 - (b) Find the other three roots, explaining your method for each root. [8 marks]
- 7. Prove by mathematical induction that

$$\begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}^n = \begin{pmatrix} 2^n & 3^n - 2^n \\ 0 & 3^n \end{pmatrix},$$

for all positive integers n.

8. A quadratic polynomial f(x) has real coefficients and f''(0) = -2. Given that the equation f(x) = 0 has a non-real root z, find expressions for f(0) and f'(0) in terms of z and \overline{z} . [6 marks]

[7 marks]

Section B

- **9**. Consider the points A(1, 1, 1), B(2, 0, 3), C(5, 1, 2), and D(4, 2, 0). Let Π be the plane containing A, B, and C.
 - (a) Find (in terms of **i**, **j**, **k**) the vectors **AB**, **BC**, **CD**, and **DA**. [2 marks]
 - (b) Find the equation of the plane Π in the form $\mathbf{r} \cdot \mathbf{n} = 1$, and hence show that the point D lies in Π as well. [8 marks]
 - (c) Show that ABCD is a rectangle on the plane Π . [2 marks]
 - (d) Find the vector equation of the line L perpendicular to the plane Π and intersecting it at the centre of the rectangle ABCD. [3 marks]
 - (e) Find the coordinates of a point P which lies on the line L determined in part (d) such that the triangle APB is equilateral. [5 marks]
- 10. An object of mass m moves in a circle on a smooth horizontal surface, constrained by a light inextensible string of length l attached to a point at height h above the surface, as shown in the figure. The angular speed ω of the object remains constant throughout the motion, and the string is taut.
 - (a) Sketch a figure showing all the forces acting on the object, as well as the horizontal and vertical components of the tension force in the string. [4 marks]
 - (b) Show that the vertical component of the tension has magnitude $m\omega^2 h$. [7 marks]
 - (c) In the remaining calculations, let h = 20 cm, and use the value $g = 9.8 \text{ ms}^{-2}$ for the gravitational acceleration.
 - (i) If the reaction force exerted on the object by the surface is 20% of the weight of the object (in magnitude), find the angular speed ω . [5 marks]
 - (ii) Find the largest value of ω for which the object remains on the surface. [4 marks]

11. (a) The discrete random variable X has the following probability distribution:

x	1	2	3	4	5
$\mathbf{P}(X=x)$	0.2	0.3	0.2	a	b

Here, a and b are positive constants.

- (i) Show that a + b = 0.3.
- (ii) Given that E(X) = 2.8, obtain a second equation involving *a* and *b*. Hence determine the value of *a* and the value of *b*. [3 marks]
- (iii) Given that X_1 and X_2 are independent observations of the random variable X, determine $P(X_1 + X_2 \le 4)$, explaining your reasoning. [4 marks]
- (b) Let N represent the number of buses passing a bus stop in one hour. We can model N as a Poisson random variable with rate parameter $\lambda = 1.5$.
 - (i) Write down the mean and variance of N. [2 marks]
 - (ii) If Y = 3N 4, what are the mean and variance of Y? [2 marks]
 - (iii) Using the appropriate formula for probabilities of the form P(N = k), calculate the probability that 3 or fewer buses are observed in a particular hour. Show your working clearly. [3 marks]
 - (iv) If N_1 , N_2 and N_3 are the numbers of buses passing the stop between 9.00am and 10.00am, between 10.00am and 11.00am and between 11.00am and 12.00pm respectively, what is the distribution of $M = N_1 + N_2 + N_3$, the number of buses passing between 9.00am and 12.00pm? [2 marks]
 - (v) With M as in (iv), find $P(M \ge 2)$, using either an appropriate formula or a probability table. Indicate clearly which method you used. [2 marks]

[2 marks]