Module Identifier MA10020  
Academic Year 2000/2001  
Co-ordinator Dr T P McDonough  
Semester Semester 1  
Other staff Dr V C Mavron, Dr J M Pearson, Dr R J Douglas, Dr R S Jones, Dr D M Binding  
Pre-Requisite A-level Mathematics or equivalent.  
Mutually Exclusive MA12110, MA12510, MA12610, MA13010, MA13510, MA13610  
Course delivery Lecture   40 x 1 hour lectures  
  Seminars / Tutorials   11 x 1 hour tutorials  
  Workshop   4 x 1 hour workshops (including test)  
Assessment Exam   2 Hours (written examination)   75%  
  Continuous assessment     25%  
  Resit assessment   2 Hours (written examination)   100%  

General description
This module covers the algebra and calculus which are fundamental to the development of mathematics.

To introduce students to the ideas of algebra through the study of complex numbers and polynomials; to establish a clear understanding of the ideas of limit and derivative; to develop technical facility in calculations involving limits and derivatives and to develop techniques for determining definite and indefinite integrals.

Learning outcomes
On completion of this module, a student should be able to:

1. SETS AND MAPPINGS: Introduction to number systems and mappings.
2. FINITE SUMS: The Binomial Theorem, arithemetic and geometric series. The Principle of Mathematical Induction.
3. COMPLEX NUMBERS: Geometric interpretation. DeMoivre's Theorem.
4. POLYNOMIALS: The Division Algorithm and the Remainder Theorem. Symmetric functions. Relations between roots of a polynomial and its coefficients.
5. FUNCTIONS OF A REAL VARIABLE: Graphs of elementary functions (polynomial, trigonometric, exponential and logarithm, absolute value and integer part). Periodic functions, even and odd functions. Operations on functions: addition, multiplication, division, composition [FT 1.2-4, 1.6].
6. LIMITS AND CONTINUITY: Limit notation. Rules for manipulation of limits [FT 2.1-2]. Sandwich theorem for limits, and applications, [FT 2.3]. Definition of continuity at a point in terms of limits. Continuity of sum, product, quotient and composite of continuous functions. Intermediate - value theorem [FT 2.4].
7. DIFFERENTIATION: Fermat's difference quotient (f(x)-f(a))/(x-a) and its limiting value as x tends to a. Definition of the derivative of f(x) at a point. Geometric significance of the notion of a derivative. Differentiation from first principles of some elementary functions. Continuity of differentiable function; examples of continuous functions that are not differentiable. Rules for differentiation. Examples on differentiation, including logarithmic differentiation. Second-order derivatives [FT 3.1-5].
8. INVERSE FUNCTIONS: Definition of inverse functions; trigonometric and polynomial examples. Differentiation of elementary inverse functions [FT 6.8-9].
9. LOCAL MAXIMA AND MINIMA, CURVE SKETCHING: Locating the critical points of a function. Using the first derivative test to determine local maxima and minima [FT 4.2]. Points of inflexion [FT 4.3]. Graphs of rational functions, vertical asymptotes, horizontal asymptotes [FT 4.4].
10. INTEGRATION: The Fundamental theorem of the integral calculus. Linearity properties of integration. Indefinite integrals [FT 5.4-5]. Methods of integration: integration by substitution, integration by parts [FT 5.6, 8.2]. Definition of log x as an integral. Properties of the log function from the properties of the integral. The exponential function as the inverse of the log function. The hyperbolic functions. Integration of rational functions, use of partial fractions [FT 8.3].

Reading Lists
** Recommended Text
R L Finney and G B Thomas, [FT]. (1994) Calculus. 2nd. Addison-Wesley
M W Liebeck. (2000) A Concise Introduction to Pure Mathematics. CRC Press
** Supplementary Text
R A Adams. Calculus - a Complete Course. Addison-Wesley
K E Hirst. Numbers, Sequences and Series. Arnold
D W Jordan and P Smith. Mathematical Techniques: an introduction for the engineering, physical and mathematical sciences. Oxford University Press