Module Identifier MA11210  
Academic Year 2000/2001  
Co-ordinator Dr R S Jones  
Semester Semester 2  
Other staff Professor T N Phillips  
Pre-Requisite MA10020  
Course delivery Lecture   20 x 1 hour lectures  
  Seminars / Tutorials   6 x 1 hour tutorials  
  Workshop   2 x 1 hour workshops (including test)  
Assessment Exam   2 Hours (written examination)   75%  
  Continuous assessment     25%  
  Resit assessment   2 Hours (written examination)   100%  

General description
Mathematics is perhaps the most efficient and successful way of describing the real world. The purpose of this module is to introduce students to the notion of mathematical modelling and to develop the technical skills for the solution of the mathematical problems that arise in applications. The syllabus will include techniques of integration, first-order and linear second-order differential equations. Examples will be taken from biology, economics anad physics.

To develop technical skills and a facility for using calculus in applications.

Learning outcomes
On completion of this module, a student should be able to:

1. MATHEMATICAL MODELLING: The use of mathematical models to describe and understand the real world. Differentiation and rates of change. Formulation of differential equations to describe time-dependent phenomena. Elementary kinematics. Newton's laws of motion. Population dynamics and related problems.
2. DIFFERENTIAL EQUATIONS: First-order equations with separable variables. Homogeneous and linear first-order equations. Linear second-order equations with constant coefficients. Determination of particular integrals when the non-homogeneous term is a polynomial, circular function or exponential function. Method of variation of parameters. Initial and boundary value problems. Higher order linear equations with constant coefficients. Examples from biology, economics and physics.
3. OSCILLATIONS AND WAVES: Discussion of existence and uniqueness.

Reading Lists
** Recommended Text
W E Boyce & R C De Prima. Elementary Differential Equations. Wiley
A Jeffrey, [J]. Essentials of Engineering Mathematics. Chapman and Hall