Module Identifier MA37510  
Academic Year 2000/2001  
Co-ordinator Mr D A Jones  
Semester Semester 2  
Pre-Requisite MA36510  
Course delivery Lecture   19 x 1hour lectures  
  Seminars / Tutorials   3 x 1hour example classes  
Assessment Exam   2 Hours (written examination)   100%  
  Resit assessment   2 Hours (written examination)   100%  

General description
This module builds on the work in MA36510 by focusing on some of the many and varied applications of the Linear Model and considers techniques and modifications that have been motivated by them. Modern developments in the area are also considered.

To make the student aware of some of the applications of Linear Models and to consider new developments.

Learning outcomes
On completion of this module, a student should be able to:

1. THE GENERAL LINEAR HYPOTHESIS: Definition and rank of linear hypothesis. The reduction in sum of squares principle. Testing linear hypotheses. Examples including applications in biological and pharmaceutical assays. Slope ratio and parallel line assays.
2. COMPARISON OF MODELS: Orthogonality. Orthogonal polynomials. Weighing designs. Brief treatment of design optimality.
3. GENERALIZED LINEAR MODELS: Basic ideas. The exponential family. Link functions and canonical links. Deviance. Examples including models for exponential, binomial and Poisson data.
4. DIAGNOSTICS: Ordinary, standardized and studentized residuals. Leverages. Deletion statistics.

Reading Lists
** Recommended Text
R H Myers and J S Milton. A First Course in the Theory of Linear Statistical Models. PWS-Kent
** Supplementary Text
F A Graybill. An Introduction to the General Linear Model. Duxbury