Module Identifier | PH43010 | ||

Module Title | QUANTUM PHYSICS II | ||

Academic Year | 2000/2001 | ||

Co-ordinator | Dr Tudor Jenkins | ||

Semester | Semester 1 | ||

Other staff | Professor Neville Greaves | ||

Pre-Requisite | Successful Completion of Year 3 of the MPhys Scheme | ||

Course delivery | Lecture | 20 lectures | |

Assessment | Exam | End of semester examinations | 100% |

Course work | Workshop Exercises Coursework Deadlines (by week of Semester):
Answers to Workshop Exercises Weeks 6 and 11 | |

**Module description**

The matrix formulation of Quantum Physics is introduced. Time-independent (non-degenerate and degenerate) and time-dependent perturbation theory are applied to a number of physical problems, and the variational method is used to derive the ground state of Helium. The symmetry of wave functions is discussed for identical particles and particles with spin.

**Learning outcomes**

After taking this module students should :

- be familiar with the Matrix formulation of Quantum Mechanics.
- understand and apply both time-independent and time-dependent perturbation theory.
- be able to use a variational method for finding the ground state of a bound particle.
- be able to discuss the symmetry of wave functions for identical particles and particles with spin.

**Additional learning activities**

This module will include several problem-solving sessions.

**Outline syllabus**

Matrix formulation of Quantum Physics.

Perturbation theory:

(a) stationary theory - non-degenerate (1st and 2nd Order) degenerate

(b) time-dependent - harmonic perturbation, radiative transition step perturbation

Variational method : ground state of Helium.

Identical particles and spin : symmetry of wave functions; spin angular momentum, spin matrices, Helium atom, spin correlation, indistinguishibility.

**Reading Lists**

**Books**
**** Reference Text**

Sara M. McMurry.
*Quantum Mechanics*. Addison Wesley

Cassels.
*Basic Quantum Mechanics*. McGraw-Hill

Matthews.
*Introduction to Quantum Mechanics*. McGraw-Hill

F. Mandl.
*Quantum Mechanics*. John Wiley

*There is also an extensive supply of other books on the subject in the Physical Sciences Library.*.