Module Identifier MA28010  
Academic Year 2003/2004  
Co-ordinator Dr T McDonough  
Semester Semester 1  
Other staff Dr John A Lane, Mr Alan Jones, Dr Edel M Sherratt  
Mutually Exclusive Only available as part of a degree course in the Computer Science Department  
Course delivery Lecture   22 x 1 hour lectures  
  Other   Workshop. 10 x 1 hour workshops  
Assessment TypeAssessment Length/DetailsProportion
Semester Exam2 Hours  100%
Supplementary Assessment2 Hours  100%

Learning outcomes

On completion of this module, a student should be able to:

Brief description

Like other branches of science and engineering, Software engineering and Computer Science rely on mathematics for techniques to model the real world both in its physical, and in its more abstract, aspects. The mathematics taught in this module provides the basis for understanding how numbers are stored and manipulated, explains basic coordinate geometry, statistical techniques and the solution of recurrence relations. Practical applications of the material covered will be found in modules on graphics, robotics, programming languages and quantitative aspects of software engineering.


The aim of this module is to give students the mathematical skills needed to handle the quantitative aspects of software engineering.


The presentation of the mathematical ideas will be directed to their use in computing.
1. Numbers; rational and irrational. Computer representation of numbers and floating point operations.
2. Coordinate geometry; lines, planes, conics; translation, rotation, shearing, scaling.   
3. Summarising data. Histograms. Five number summaries. Box and whisker plots. Shapes of distributions. Binomial experiments and large sample behaviour. The Poisson distribution as a model for randomness. Quick and graphical tests for the Poisson distribution. Waiting times and the exponential distribution. Basic ideas of significance and goodness of fit.
4. Solution of first and second order linear recurrence relations; some examples of non-linear equations. Application to the assessment of time complexity of algorithms.

Reading Lists

** Recommended Text
K H Rosen (1999) Discrete Mathematics and its Applications McGraw-Hill 0071167560
A Croft & R Davison (1997) Foundation Maths 2/e. Addison-Wesley 0201178044
** Supplementary Text
G James (2001) Modern Engineering Mathematics 3/e. Prentice Hall/Pearson Education 0130183199


This module is at CQFW Level 5