Module Identifier PH02510
Module Title INTRODUCTION TO ELECTRICITY AND MAGNETISM
Co-ordinator Mr Barry Henley
Semester Semester 2
Other staff Mr Barry Henley
Pre-Requisite GCSE Mathematics and Science, or equivalent
Co-Requisite None
Mutually Exclusive Not available to students on 3 year BSc (Hons) or 4 year MPhys schemes
Course delivery Lecture   22 Hours
Seminars / Tutorials   3 Hours Tutorial.
Assessment
Assessment TypeAssessment Length/DetailsProportion
Semester Exam End of semester examination80%
Semester Assessment Continuous Assessment: Example classes in weeks 3,6,8, & 1120%

#### Learning outcomes

After taking this module students should be able to:
• Calculate the force on a charged particle in electric and magnetic fields.
• Describe the motion of a charged particle in a uniform electric field.
• Calculate the potential of a system of charged particles.
• Describe the structure and function of resistors, and capacitors.
• Carry out calculations on capacitors involving stored energy, charging and discharging.
• Calculate internal resistance, energy and power in DC circuits.
• Calculate DC currents and voltages in resistor networks using Kirchoff''s rules.
• Calculate reactance and impedance in AC circuits.
• Use phasor diagrams, vector methods and complex numbers to analyse AC circuits.
• Apply conditions or resonance in RCL circuits.

#### Brief description

The concept of electric charge is introduced and electric force, field and potential are explained in terms of Coulomb's Law with illustrative examples. The alternative approach of Gauss's Law is introduced. The flow of charge is considered and this leads to Ohm's Law and the concept of resistance. Capacitors and resistors are examined and examples are given of their use in electric circuits.

#### Content

Electric Charge:

Positive and negative charge
Conductors, insulators and semiconductors
Coulomb's Law
Electric field, potential and equipotentials
Force on and motion of charged particle in a uniform electric field
Charge and discharge of capacitors, time constant and half life decay
Capacitors - construction, series and parallel combinations, stored energy.

DC Electricity:

Current and resistance;resistance, Ohm's Law, resistivity, ammeters, voltmeters
DC circuits - resistors in series and parallel, internal resistance, energy, power
Potential dicider circuits
Kirchoff's rules.

AC Electricity:

AC currents in resistive, capacitive and inductive circuits; reactance and impedence
Analysis of AC circuits using phasor diagrams, vector methods and complex numbers
Power and phase angle
RCL circuits in series and parallel, conditions for resonance