Module Identifier PH06020  
Academic Year 2003/2004  
Co-ordinator Glenda Roberts  
Semester Semester 1  
Other staff Glenda Roberts  
Pre-Requisite GCSE Mathematics or Equivalent  
Co-Requisite None  
Mutually Exclusive Not available to students doing 3 year BSc or 4 year MPhys  
Course delivery Lecture   44 Hours Lectures  
Assessment TypeAssessment Length/DetailsProportion
Semester Exam3 Hours End of semester examinations  80%
Semester Assessment 2 Open book assignments Course Work:  20%

Learning outcomes

After taking this module the student should be able to:

Brief description

This module introduces the student to some of the basic mathematical tools commonly used in the physical sciences. Topics covered include algabraic techniques, logarithms, trigonometry, an introduction to vectors, comples numbers and differentiation. Particular emphasis is placed on the use of mathematical techniques to solve physical problems.


Number: Fractions, decimal system, different bases, indices and logarithms.

Algebraic techniques: linear and quadratic equations, factorisation, transposition of formulae, equations involving fractions, sumultaneous equations. Indicial, exponential and logarithmic equations.   

Trigonometry: Sine and cosine rules. Graphs of trigonometrical functions. Trigonometric equations and identities including addition and double angle formulae.   

Vectors: Vector representation, unit vectors, position vectors, vector components, vector addition, scalar product.   

Complex Numbers: Introduction to complex numbers, multiplication and division in polar form, de Moivre's theorem, powers and roots of complex numbers.   

Differentiation and its applications: Gradient of a curve, equation of a straight line, tangents and normals, rates of change, stationary values and turning points, curve sketching.

Transferable skills

The teaching of this module incorporates a large element of self-paced problem solving, both for individual and tutorial work. This is essential to consolidate students understanding of the subject matter of this module.

Reading Lists

** Recommended Text
Bostock and Chandler Core Mathematics for A level
Sadler and Thorning Understanding Pure Mathematics
** Supplementary Text
K.A Stroud Engineering Mathematics 3rd or 4th.


This module is at CQFW Level 3