Module Identifier BS10710  
Module Title INTRODUCTION TO INVERTEBRATE ZOOLOGY  
Academic Year 2006/2007  
Co-ordinator Dr John D Fish  
Semester Semester 1  
Other staff Dr Helen Marshall, Dr John H R Gee  
Pre-Requisite Normally A or AS level Biology or its equivalent.  
Course delivery Lecture   20 x 1h lectures  
  Practical   5 x 3 hour practicals  
Assessment
Assessment TypeAssessment Length/DetailsProportion
Semester Exam2 Hours 1 x 2 hour theory examination, comprising multipule choice questions and essays.70%
Semester Assessment Continuous assessment of practicals 2-5. Practical exercises are carried out during the practical class and submitted for assessment.  30%
Supplementary Assessment2 Hours One 2-hour theory examination. One 2 hour theory exam comprising multiple choice questions and essays.100%

Learning outcomes

On completion of the module the student should be able to


Aims

The aim of this module is, through a series of integrated lectures and practicals, to introduce students to the major groups of invertebrates with an emphasis on (i) the basic features of invertebrate design (ii) diversity of body form and function (iii) inter-relationships.

Content

The module begins with a review of invertebrate design and classification. This is followed by detailed investigation of selected groups.
The key elements of sponges are considered - the choanocyte structure and function; the water conducting system in ascon-, sycon- and leucon-type sponges; spicules; the absence of true nerves. The organisation of cnidarians is discussed with emphasis on polymorphism, symbiotic associations and colonial life.
Further aspects of invertebrate design are considered with the introduction of groups of invertebrates commonly referred to as triploblastic - the germ layer theory; the development and significance of body cavities; metamerism; symmetry; cleavage patterns. Protostome and deuterostome lines of evolution are discussed. Throughout these lectures examples are drawn from appropriate phyla, and at this stage of the course annelids are studied in detail to illustrate diversity of form and function.
With the introduction of the phylum Arthropoda, specific topics are studied in detail. Arthropodization - intermittent growth patterns, Dyar's law, growth cycles. Moulting - the hormonal mechanisms in insects. Locomotion, including flight in insects. Feeding mechanisms - in relation to mouthpart structure.
Studies on the phylum Mollusca emphasise the diversity of function that is achieved by adaptive radiation from a relatively simple body plan. Features of molluscan structure and function common to most of the major groups are explored with emphasis on the shell, respiration, digestion, circulatory and excretory systems. The form of the shell and mantle cavity of the Bivalvia is considered along with the evolution of the gills. Adaptive radiation in the group is reviewed. Gastropods are studied particularly with respect to torsion, the development of a coiled shell, and the evolution of the gills and mantle cavity. Features distinguishing cephalopods from other molluscs and enabling them to operate as fast-moving benthic and pelagic predators in the sea are discussed.
The lecture course concludes with a study of echinoderms - symmetry, diversity of body form, the endoskeleton, the uniqueness of the water-vascular system and its role in feeding respiration and locomotion. The comparison between the protosomes and the deuterostomes is revised and the deuterostome line of evolution is examined.

Practical classes illustrate and develop the main themes introduced in lectures. The construction of sponges; polymorphism of cnidarians; diversity, form and function, and adaptive radiation of the major phyla. Practical work involves observation of living specimens, video presentation and examination of prepared material. There are no dissections.

Reading Lists

Books
** Recommended Text
Alexandra, R.M. (1990) Animals Cambridge University Press
Barnes, R.S.K., Calow, P. & Olive, P.J.W. (1993) The invertebrates; a new synthesis Oxford: Blackwell Scientific
Pechenik, J.A. (1996) Biology of invertebrates 3rd. Lond: W.C. Brown
Ruppert, E.E. & Barnes, R.D. (1994) Invertebrate zoology 6th. Saunders College Publishing

Notes

This module is at CQFW Level 4