Module Identifier 
MA30110 
Module Title 
GROUP THEORY 
Academic Year 
2006/2007 
Coordinator 
Mr Alan Jones 
Semester 
Semester 2 
Other staff 
Professor V Mavron 
PreRequisite 
MA20310 
Course delivery 
Lecture  19 Hours. (19 x 1 hour lectures) 

Seminars / Tutorials  3 Hours. (3 x 1 hour examples classes) 
Assessment 
Assessment Type  Assessment Length/Details  Proportion 
Semester Exam  2 Hours (written examination)  100% 
Supplementary Exam  2 Hours (written examination)  100% 

Learning outcomes
On completion of this module, a student should be able to:
1. determine whether given algebraic systems are groups;
2. determine whether elements and subsets of a group possess a variety of properties;
3. state and prove some fundamental theorems, selected from the isomorphism theorems, the orbitstabilizer theorem and the theorems of Lagrange, Cayley and Sylow;
4. represent groups as matrix groups, as permutation groups and with generatorrelation presentations, and use these representations to compute within the groups;
5. solve problems in group theory by selecting and applying appropriate theorems and techniques from the general theory.
Brief description
The concept of a group occurs naturally in situations involving symmetry or in which some quantity is being preserved; for example, various letters such as A, S and I possess different numbers of symmetries and rigid motions preserve distance. This module will introduce the notion of a group as an algebraic object defined by a simple set of axioms. Various techniques for describing groups (presentations, matrix and permutation representation) will be studied. The principal structure theorems for finite groups will be described and applied in a variety of group theoretic contexts.
Aims
To provide a deeper understanding of the concepts and techniques of abstract algebra, introduced in module MA20310, by focusing on the group concept, starting with an axiomatic development of group theory, establishing a structure theory, mainly in the context of finite groups, and giving brief illustrations of a selection of applications of group theory.
Content
1. Fundamentals: Definitions and examples. Presentations of groups. Elementary consequences of the definitions. Subgroups. cosets. Lagrange's theorem.
2. Basic structure theory: Normal subgroups and factor groups. Direct products. Homomorphisms. The isomorphism theorems. Automorphism groups.
3. Permutation groups: Symmetric groups. Cycle decomposition. Regular representation. Cayley's theorem. Orbits. Stabilizers. The orbitstabilizer theorem.
4. Local structure theory: psubgroups. The Sylow theorems. Classifying groups of small order.
5. Global structure theory: Classification of finite Abelian groups. The JordanHolder theorem.
Reading Lists
Books
** General Text
Scott, W. R. (July 1988) Group Theory
0486653773
** Recommended Text
J F Humphreys (2001) A Course in Group Theory
Oxford University Press 0198534590
** Supplementary Text
B Baumslag and B Chandler (1968) Theory and Problems of Group Theory
McGrawHill 0070041245
C R Jordan and D A Jordan (1994) Group Theory
Edward Arnold 034061045X
D A R Wallace (1998) Groups Rings and Fields
Springer 3540761772
D W Farmer (1996) Groups and Symmetry
6th Ed. American Mathematical Society 0821804502
J B Fraleigh (2003) A First Course in Abstract Algebra
7th Ed. AddisonWesley 0321156080
J R Durbin (2000) Modern algebra : an introduction
4th Ed. John Wiley and Sons, Inc. 0471321478
Notes
This module is at CQFW Level 6