| Module Identifier | MP14010 | ||||||||||||||
| Module Title | DYNAMICS AND RELATIVITY | ||||||||||||||
| Academic Year | 2006/2007 | ||||||||||||||
| Co-ordinator | Dr Eleri Pryse | ||||||||||||||
| Semester | Semester 1 | ||||||||||||||
| Other staff | Professor Keith Birkinshaw | ||||||||||||||
| Pre-Requisite | A-level Mathematics | ||||||||||||||
| Co-Requisite | None | ||||||||||||||
| Course delivery | Lecture | 20 x 1-hour sessions of lectures and example classes | |||||||||||||
| Assessment |
| ||||||||||||||
1. Describe the basic principles of Dynamics and Special Relativity;
2. Model problems in dynamics and special relativity with mathematical equations, apply basic solution techniques to these equations and interpret the results in the original physical context;
3. Solve numerical problems in linear and rotational dynamics and in special relativity.
DYNAMICS
Kinematics: constant acceleration, projectile motion
Newton's Law of Motion: momentum, weight, contact forces on solids, friction, circular motion and centripetal face, drag force.
Work and Energy: work done by face, kinetic energy, power, conservative force, potential energy, conservation of mechanical energy.
Conservation of Momentum: centre-of-mass, collisions, coefficient of restitution, rocket propulsion
Gravity: Kepler's Laws, Newton's Law of Gravity, gravitational potential energy
RELATIVITY
Introduction and discussion of the shortcomings of pre-relativistic physics, which lead to the simple postulates of Special Relativity, with spectacular results in our understanding of space and time. The Lorentz-Einstein transformations are derived from the postulates, leading to an understanding of time-dilation and Lorentz contraction.
| Problem_solving | Problem solving skills are developed throughout this module and tested in assignments and in the written examination. | ||
This module is at CQFW Level 4