Module Identifier MP21010  
Academic Year 2007/2008  
Co-ordinator Dr Eleri Pryse  
Semester Semester 1  
Other staff Professor Keith Birkinshaw  
Pre-Requisite Core Physics Modules at Level 1 or MP14010, MA11010 and MA11210  
Course delivery Lecture   20 x 1-hour lectures  
  Seminars / Tutorials   2 x 1-hour seminars/workshops/exercise classes; 2 x 1-hour tutorials  
Assessment TypeAssessment Length/DetailsProportion
Semester Exam2 Hours written examination  70%
Semester Assessment Course Work 2 Example Sheets. 30%
Supplementary Exam2 Hours written examination  100%

Learning outcomes

On completion of this module, students should be able to:
1. Describe the basic principles of the special and general theories of relativity;
2. Solve problems in relativity by application of the basic principles and by the selection and use of appropriate mathematical techniques;
3. Provide mathematical models for problems on damped and forced oscillatory systems, simple coupled systems and rotating bodies, solve the mathematical problems and interpret the results in the physical context.

Brief description

Classical mechanics has proved very successful in explaining and predicting the behaviour of bodies moving at low speeds but not at speeds approaching that of light, while relativity deals with the latter situations. This module develops the fundamental concepts and techniques of both of these theories, providing a sound mathematical basis in each case.


To gain understanding of the classical theory of mechanics and the theory of relativity fundamental to modern physics. The application of mathematics throughout this module ensures that it is suitable as a core module for many honours degree schemes in Mathematics.



Special theory
Lorentz transformation; relativistic interval; Minkowski diagram; causality.
Transformation of velocities.
Relativistic optics: aberration of light; Doppler effect.
Relativistic dynamics: E=mc2; energy-momentum transformations and four-vector.
Compton scattering.

General theory
Inertial and gravitational mass; Principle of Equivalence.
Gravitational redshift; Clocks in a gravitational field.
Einstein's theory of gravity; geodesics; non-Euclidean space-time.
The Schwarzschild solution; black holes.


Harmonic motion: revision of simple harmonic motion, damped and forced harmonic motion.
Coupled oscillators.
Rotational motion: angular momentum and torque, moment of inertia; conservation of angular momentum, gyroscopic motion.

Reading Lists

** Recommended Text
G.R. Fowles and G.L. Cassidy Analytical Mechanics Saunders College Publishing 0030989744
** Supplementary Text
A.P.French Special Relativity Van Nostrand Reinhold
G.F.R. French and R.M. Williams Flat and Curved Space-Times Clarendon Press


This module is at CQFW Level 5