Optimising the flow of experiments to a Robot Scientist
with Multi-Objective Evolutionary Algorithms

Emma Byrne
Department of Computer Science
University of Wales, Aberystwyth

elb@aber.ac.uk

ABSTRACT

A Robot Scientist is a physically implemented system that
applies artificial intelligence to autonomously discover new
knowledge through cycles of scientific experimentation. Ad-
ditionally, our Robot Scientist is able to execute experiments
that have been requested by human biologists. There arises
a multi-objective problem in the selection of batches of tri-
als to be run together on the robot hardware. We describe
the use of the jMetal framework to assess the suitability
of a number of multi-objective metaheuristics to optimise
the flow of experiments run on a Robot Scientist. Experi-
ments are selected in batches, chosen in order to maximise
the information gain and minimise the use of resources. The
evolutionary multi-objective algorithms evaluated here per-
form well in finding solutions to this problem, either finding
a long, fairly efficient Pareto optimal front, or a shorter,
highly efficient Pareto optimal front.

Categories and Subject Descriptors

J.3 [Computer Applications]: Life and Medical Science—
Biology and Genetics; 1.2.8 [Computing Methodologies]:
Artificial Intelligence—Problem Solving, Control Methods,
and Search

General Terms

Algorithms, Performance

Keywords

Evolutionary multi-objective optimisation, Robot Scientists,
Experiment flow optimisation, Yeast genomics, Evaluation,
Performance

1. INTRODUCTION

A Robot Scientist is a physically implemented robotic sys-
tem that applies techniques from artificial intelligence to
execute cycles of automatic scientific experimentation. Our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECC0007 July 7-11, 2007, London, England, United Kingdom
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

recently built Robot Scientist! is one of the most advanced
laboratory automation systems in existence. The advances
that distinguish our Robot Scientist are its Al software, the
design of the hardware and the complete autonomy of the
knowledge discovery process [3].

A Robot Scientist has hardware that permits it to carry
out experiments (see Figure 1). These experiments may
have been devised by the Robot Scientist itself or they may
have been requested by human biologists. For details of
how our Robot Scientist autonomously devises and executes
cycles of scientific discovery, see Section 2.

Figure 1: The hardware system of our Robot Sci-
entist. Visible here are one of the robot arms
(twisters). The automated freezer library in which
yeast strains are stored is on the left and the chem-
ical dispenser is on the right. Several other com-
ponents, including plate readers and incubators, are
not shown.

One of the tasks any Robot Scientist must perform is
to select batches of experiments to be run together from
a database. In batching these experiments, there are multi-
ple objectives to consider such as: maximising information
gain, minimising the use of resources and ensuring that the
batch is able to be run according to the physical constraints
of the robot hardware. This problem has all the characteris-
tics of a multi-objective problem. We wish to optimise along
several orthogonal dimensions simultaneously. In addition,
these dimensions are epistatic in that the values in each di-
mension are dependent on, but not a function of, the values

"http://www.aber.ac.uk/compsci/Research/bio/robotsci/



in the other dimensions. We call the problem of generating
a Pareto optimal set of such batches the experiment flow
optimisation problem.

A multi-objective evolutionary approach is an appropri-
ate solution to our problem. There are several state of the
art metaheuristics that have been suggested as potential ap-
proaches to solving multi-objective problems. By their na-
ture multi-objective problems admit of several solutions, all
of which may be Pareto optimal®. Several existing, state of
the art metaheuristics have been shown to give good results
on abstract multi-objective problems. These metaheuristics
include: the multi-objective genetic algorithms SPEA2 [11],
NSGA-II [1] and PAES [4]; the particle swarm optimiser
(PSO) OMOPSO [9] and the scatter search method AbYSS
[6].

The jMetal framework, described in detail in [2] imple-
ments these metaheuristics, alongside libraries of operators
for selection, mutation and crossover. We have used this
framework to evaluate existing metaheuristics against a new,
real world problem: experiment flow optimisation for a Robot
Scientist.

1.1 Important Terminology

In this paper the term experiment always refers to a bio-
logical experiment carried out on a Robot Scientist. A trial
always refers to a set of such experiments. A run refers to
a single execution of a metaheuristic applied to the experi-
ment flow optimisation problem for a Robot Scientist.

Trial
ID
Date
Priority
Sample Sample
ID ID
Strain B Strain
Nutrients Nutrients
Experiment Experiment
Experiment Experiment

Figure 2: A simplified model of the relationship be-
tween Trials, Samples and Experiments.

Figure 2 shows the relationship between the terms that
describe the biological experiments that our Robot Scientist
performs. Trials are sets of work that we wish the robot to
carry out. Each trial consists of a number of samples, usually
one sample of interest and several controls. A knockout
strain is a strain of yeast that has had one or more genes
removed. Wild type yeast is yeast that has had no genes
removed. A nutrient is a chemical that is necessary for the

2A solution is Pareto optimal with respect to a set of solu-
tions if and only if the solution is not outperformed on at
any objective

yeast’s growth. Each sample is a pairing of a knockout or
wild type strain of yeast and one or more nutrients. Each
experiment is one of many replicates of a sample. FEach
experiment is individually grown in a single well of a 96 well
plate.

2. THE ROBOT SCIENTIST

Our Robot Scientist is capable of autonomously design-
ing and initiating >1,000 new strain/nutrient experiments
each day, with each experiment lasting up to 4 days, using
over 50 different yeast strains. Not only are the experiments
automated and performed by laboratory robots, but the hy-
potheses are generated by computer. Our Robot Scientist
uses artificial intelligence to derive hypotheses concerning
the functions of genes in yeast and to devise experiments to
test these hypotheses. Experiments are designed by intel-
ligent software and executed on the robot hardware. The
results are analysed automatically and are fed back into the
next round of hypothesis formation and experimentation [3].

Our Robot Scientist has both an intelligent (software) ar-
chitecture and a lab automation (hardware) architecture.
Figure 3 shows how these two elements work together. Grey
rectangles represent the functions of the AI features of our
Robot Scientist; the three dimensional box represents the
functions that are the responsibility of our Robot Scientist’s
hardware; cylinders represent data storage and the oval rep-
resents submissions of trials from human biologists. All tri-
als, whether human or robot generated, are submitted via a
Grid interface. We make the robot hardware, along with a
number of our Robot Scientist’s services, available to other
institutions as an Equipment Grid, via this Grid Interface.

Interpret
i Results
.
Generate
Results [ @=—)
Hypotheses
‘ Execute
. Trial
Design
Trial -
Generate ‘
= Batch of
External Trials
Trials

Figure 3: The cycles of experimentation carried out
by our Robot Scientist.

Our Robot Scientist autonomously discovers new biolog-
ical knowledge about the enzymatic function of genes in
Saccharomyces cerevisiae (beer yeast). Our Robot Scien-
tist’s intelligent hypothesis generator uses abductive logic
programming, a repository of background knowledge about
yeast metabolism and experimental results to determine the
function of individual genes or sets of genes. The experi-
ments are carried out on the robot hardware and the results
fed back to the hypothesis generator. Each experiment con-
sists of a small amount of a strain of yeast that is either wild
type or that has had one or more genes knocked out. This is
grown in a cocktail of nutrients. By comparing the growth
of knockout and wildtype yeast, with and without nutrients,
it is possible to abduce the enzymes that the missing gene(s)
code for.



Our Robot Scientist’s hypothesis generator uses abduc-
tive logic programming to derive sets of plausible functions
for a given gene in S. cerevisiae based on previous experi-
mental data and background knowledge about the organism.
Specifically, it determines which enzymes a given gene may
code for. If there is only one plausible function for this gene
then it is tentatively accepted as new knowledge. If there
are several plausible functions, these are sent to an experi-
ment generator. This experiment generator uses background
knowledge about S. cerevisiae and about experiments, to de-
sign a trial (a set of connected experiments) that will lead to
the greatest information gain, in terms of how many of these
hypotheses it may rule out, at the lowest cost. The chosen
trial is then submitted via a Grid interface to a database of
queued trials. Human biologists may also submit trials via
the same Grid interface.

Trials are run on the robot hardware. The hardware con-
sists of a number of lab automation tools that work together
to store, dispense, incubate and observe the samples that
make up each trial. A diagram of the robot hardware is
available in [10]. Growth of the yeast samples is monitored
using an optical density (OD) reader that measures the at-
tenuation of light through a single well of a 96 well plate,
which contains an individual experiment. These measure-
ments are returned to our Robot Scientist via a database,
and are accessed by a module that interprets these results
to determine whether significant growth has occurred in the
samples. It is these results that are then fed in to the next
round of hypothesis generation.

On submission to the database, trials are given a time
stamp and an ID. We need to send the trials in the database
to the robot hardware in batches. It is here that the exper-
iment flow optimisation problem occurs.

3. EXPERIMENT FLOW OPTIMISATION

The batch selection process must autonomously select sets
of experiments that can be run together and that optimise
the trade-off between information discovery and resource
use. We need the batch maker to be able to optimise the
batch of trials it selects on several dimensions. The experi-
ment flow optimisation problem requires that we:

e maximise the number of trials that will be run in this
batch

e minimise the amount of resources (e.g. 96 well plates)
that will be used

e favour those trials that have been flagged as high pri-
ority

e favour those trials that have been queued the longest,
by maximising the amount of time that the trials in
the selected batch have been waiting

e constrain the number of chemicals to the maximum
number of dispensing reservoirs on the liquid dispenser
- this is a hard constraint

e minimise the amount of time that samples remain out
of the freezer

For ease of analysis, we only consider the number of tri-
als, number of plates and amount of wait time in this paper.

Restricting analysis to three dimensions simplifies the evalu-
ation of the metaheuristics. We are attempting to maximise
the number of trials present in the batch, minimise the num-
ber of plates used and maximise the amount of queue time
for the trials in the batch, which is equivalent to trying to
run the oldest trials first.

3.1 Using evolutionary multi-objective optimi-
sation

There are multiple features of the selected batches of tri-
als that must be optimised and the features that must be
optimised are incommensurable. For example, the length of
time that experiments have been queued and the number
of trials to be executed are measured in different units and
there is no non-arbitrary conversion between the two.

The features to be optimised are epistatic, that is, the
value of one feature is dependent on one or more of the oth-
ers. For example, the number of plates required to run the
trials is dependent on (but not a function of) the number
of trials to be run in the batch. We wish to maximise the
number of trials in a batch whilst simultaneously minimising
the number of plates. We have two options: i) to combine
these different dimensions into one single fitness measure
or ii) to develop a set of Pareto optimal solutions. Option
i) requires some formula that reconciles these various in-
commensurable, yet epistatic features into a single function.
There is no meaningful way of doing so - we cannot deter-
mine a priori how many plates it is “worth” expending in
order to run an extra n trials.

We favour multiple answers that may be better on dif-
ferent dimensions. For example we may wish to give the
robot the option to select from among the Pareto optimal
batches the one that uses the fewest plates for example, or
the one that exhausts the most queuing time. Finally, if we
extend the range of work that we require the robot scientist
to perform, by adding new hardware for example, we need
to be able to add extra dimensions to the optimisation task.
Adding extra dimensions is simply a matter of augmenting
the fitness function in order to derive the necessary values.

The landscape of the experiment flow optimisation prob-
lem is rugged. This is a result of the epistatic nature of this
problem. Every step in a given dimension may also result
in a change of value in all other dimensions. For this rea-
son, an evolutionary approach, which maintains a diverse
population of solutions, and which explores the space in all
dimensions simultaneously, is ideal for our needs.

The features of the experiment batching problem make it
particularly suited to an evolutionary multi-objective opti-
misation approach. Firstly, we have multiple features of the
solution that we wish to optimise simultaneously. Evolu-
tionary multi-objective optimisation methods permit us to
evolve a Pareto optimal front. This allows us to search for
solutions (batches) that are fit in all dimensions of fitness
and excel in one or more dimensions. It also results in a set
of solutions rather than a single solution. One solution can
be chosen from amongst this population.

3.2 [Evolutionary multi-objective optimisation
in other experimental design tasks

There are a number of other scientific discovery tasks that

have successfully exploited the evolutionary multi-objective

optimisation approach. For example, [8] describes using

NSGA-II in the domain of photo-chemistry, in order to pre-



dict the characteristics of molecules in excited- and ground-
state. In [7], the MOGA PESA-II is successfully used to
optimise the settings of gas chromatography and time-of-
flight mass spectrometry instrumentation used in biological
experiments.

However, our approach is unlike these. The range of ex-
periments it is possible to carry out on our Robot Scien-
tist is determined by the large number of strain and nu-
trient combinations that it is possible to select. For each
strain of yeast, it is possible to carry out in the order of
10'6 experiments consisting of unique combinations of avail-
able nutrients. Our Robot Scientist relies on abductive logic
programming and extensive domain knowledge to select the
most useful trials from this large space. The need for multi-
objective optimisation arises not at the point of experimen-
tal design but at the point of deciding which trials should
be run in one batch.

4. METAHEURISTICS

jMetal [2] is a Java-based framework that contains a suite
of metaheuristics and the generic operators from which these
are constructed. The framework was designed to facilitate
the design of new multi-objective metaheuristics. However,
for this evaluation, the suite was used to evaluate the per-
formance of existing metaheuristics on our real world, multi-
objective optimisation problem.

The metaheuristics available in jMetal were chosen as
they are among the state of the art in evolutionary multi-
objective optimisation. Importantly, the approaches we have
chosen are well documented. The jMetal documentation [2]
demonstrates that the implementations in the framework
are correct with respect to their reference implementations.

This paper will examine the performance of three MO-
GAs: PAES, NSGA-II and SPEA2, a hybrid scatter search
approach,pae AbYSS, and a multi-objective particle swarm
optimiser, OMOPSO. These have been chosen because of the
good performance they have demonstrated in recent stud-
ies, and also because they cover several diverse evolutionary
methods. A brief review of these methods is presented here,
in order to assist the reader in understanding the results of
the evaluation.

4.1 PAES

PAES stands for the Pareto Archived Evolution Strategy
[4]. The version implemented in jMetal is (14+1)PAES, a
gradualist approach that eschews crossover, using mutation
only to explore the space. PAES has an aggressive approach
to discarding dominated solutions - if the parent dominates
the child, the child is rejected; if the child dominates the
parent, the parent is rejected; if parent and child mutu-
ally non-dominate, and the child dominates solutions in the
archive, the child becomes the new parent and all solutions
in the archive dominated by the child are removed; finally, if
parent and child mutually non-dominate, and the child dom-
inates no solution in the archive, the one in the most crowded
space (with respect to the archive) is rejected with the other
becoming, or remaining, the parent. In [4], Knowles and
Corne demonstrate that this leads to performance with rel-
atively low time complexity compared to other, contempo-
rary methods. Additionally, they demonstrate that PAES
generates a population that has a good approximation to
the Pareto front for, among others, the routing problem.

4.2 NSGA-II

NSGA-II [1] is a variant of NSGA (Non-dominated Sort-
ing Genetic Algorithm) that addresses the computational
complexity of earlier approaches by adopting a fast non-
dominated sorting approach that enables elitism and that
also reduces the computational complexity of the algorithm.
This approach is described in detail in [1] but briefly it con-
sists of iteratively searching for non-dominated fronts and
uses a novel book-keeping strategy that significantly reduces
the number of comparisons to be made in this search. A
crowding operator is used to maintain population diversity,
rather than the sharing operator used in the original NSGA.
This eliminates the need to set a share parameter ospare @
priori. Crowding also has lower computational complexity
than sharing. NSGA-II also introduces a constraint handling
approach that gives inferior rank to individuals in proportion
according to the degree to which they violate constraints.

4.3 SPEA2

SPEAZ2 [11] builds on SPEA (Strength Pareto Evolution-
ary Algorithm), but takes into account some recent improve-
ments in evolutionary multi-objective optimisation methods,
notably in NSGA-II and PESA. SPEA2 improves on the
original SPEA algorithm in that it: has an improved fitness
assignment scheme; incorporates a density estimation tech-
nique based on the k-nearest neighbour metric and uses an
archive truncation method that maintains boundary solu-
tions.

In the original SPEA metaheuristic the strength of a solu-
tion was calculated with respect to dominance of members
of the archive only. This led to poor ranking where, for
example, the archive contained only one individual. To ad-
dress this problem SPEA2 maintains an archive of constant
size and measures strength with respect to both the archive
and the working population. The SPEA2 fitness measure
incorporates a raw fitness value (the sum of the strength
measures of the solutions that dominate an individual) and
the distance metric, which penalises solutions that are close
to other individuals.

The fixed archive size demands strategies to address both
the situation where the number of non-dominated solutions
is smaller than the archive size and the situation where the
number of non-dominated solutions exceeds the archive size.
In the former case, the best individuals are selected from the
dominated members of the working population in order to
bring the archive up to size. In the second case a trun-
cation operation is carried out. This truncation operator
exploits the k-nearest neighbour metric in order to remove
members of the archive that are in the most crowded areas
of the front. Using the k-nearest neighbours metric ensures
that the solutions at the outer limits of the Pareto front are
maintained in the archive.

44 OMOPSO

OMOPSO is a Multi-Objective Particle Swarm Optimiser
(MOPSO) that has been shown to obtain superior results
when contrasted with other MOPSOs [9]. It develops the
standard Particle Swarm Optimisation (PSO) approach of
creating a population of individuals (particles) that move
about the search space in an attempt to emulate the per-
formance (by mimicking the velocity) of the best perform-
ing particles. In order to achieve multi-objective optimi-
sation, MOPSOs identify a set of leader particles on the



Pareto front, rather than a single leader in the case of PSOs.
OMOPSO uses the methods of Pareto dominance and crowd-
ing in order to select the set of leading particles, and incorpo-
rates three types of mutation (no mutation, uniform muta-
tion and non-uniform mutation) each applied to a subset of
the particles in the swarm, in order to ensure that exploring
and exploiting behaviours are applied to the search space.
Finally, in order to limit the size of the solution archive,
OMOPSO uses e-dominance to divide the search space into
a grid, and restrict the population to a single non-dominated
solution in each grid block.

4.5 AbYSS

AbYSS is an Archive-based hYbrid Scatter Search ap-
proach to solving multi-objective problems [6]. It is based on
the standard scatter search techniques of deterministically
combining members of a reference set in order to generate
new solutions to a given problem. Scatter Search methods
conventionally exclude stochastic methods but AbYSS in-
corporates stochastic operators in order to better address
multi-objective problems. AbYSS combines operators used
by three MOGAs: the (1+1)PAES method is used to carry
out local search as the systematic improvement method.
The constrained dominance method developed in NSGA-
IT is used as a niching measure in determining the fitness
of solutions thus generated. The SPEA2 fitness measure is
used when selecting individuals to enter the archive.

ADbYSS generates two reference sets, R1 and Rz. In R
are stored the solutions that are considered best, via the
SPEA2 fitness measure. R> contains those individuals with
the best distance values, that is, those that are furthest from
their neighbours. For each pair of individuals in R; and
for each pair of individuals from Ry, pair-wise crossover is
carried out to generate new solution subsets. In [6], linear
crossover was tried, as is standard for the scatter search
approach, but SBX (simulated binary crossover) proved to
be more effective. Using SBX requires relaxing the scatter
search restriction on using stochastic search measures, but
was considered by Nebro et al in [6] to be justified by the
better performance that results.

S. APPLYING JMETAL TO EXPERIMENT
FLOW OPTIMISATION

To simplify the analysis of results, the decision was taken
to use simulated data whose characteristics were known,
rather than using real data. This data was generated using
our Robot Scientist’s trials database structure as a template.
Java’s built in pseudo-random number generator, together
with knowledge of the distribution of strains, chemicals and
replicates typically used in trials, was used to create indi-
vidual records. The data therefore has the same structure
as, and is of a similar distribution to, the data that would
be submitted to our Robot Scientist. Sets of 100 trials were
generated using a Java application that generates the sort of
data we might retrieve from the trials database. 100 trials
is at the upper limit of the number of trials we might expect
to be waiting to be batched at any one time. A set of 100
trials consists of 400 samples and around 20,000 individual
experiments. A trial is described by:

e Trial ID

e the date on which it was submitted

e the priority of the trial (low or high), and
e the samples used in the experiment
Each sample record contains details of:
e the knockout strain of yeast that is being grown
e the nutrients in which it will be grown, and

e how many copies (replicates) of this sample are re-
quired

Each replicate is an individual experiment that will be grown
in an individual well of a 96 well plate.

The representation of the decision variable is an array
of bits. This array is the same length as the set of trials
from which the batch must be selected. In the case of these
simulations, the array is 100 bits long and each bit represents
one of the 100 trials from which a batch must be selected.
A 1 in position n indicates that trial n should be included
in the batch, whilst and 0 in position n indicates that trial
n should be excluded from the batch.

A fitness function was written to evaluate batches of trials.
There are three objectives in this function: to maximise the
number of trials to be run in the batch; to minimise the
number of plates used in the batch and to maximise the
amount of waiting time that will be exhausted by running
these trials. The decision variable determines which trials
will be in a batch. The fitness function returns three values
for a given batch: the sum of the number of trials; the sum
of the number of plates these trials will require and the sum
of the amount of time that these trials have waited.

This fitness function was used with five of the metaheuris-
tics provided with jMetal: Abyss, OMOPSO, NSGA-II, PAES
and SPEA2. Each of these metaheuristics was run 20 times
against the set of trial data. The function values (trials,
plates and time waiting) and the variable (the array of bits
that determines which of the trials are in the batch) of the
resulting populations were stored.

Where there is an option to set these variables, the max-
imum, initial and archive population sizes are set to 100.
For each of the metaheuristcs the number of evaluations was
25,000 except for OMOPSO. OMOPSO has a parameter for
the maximum number of iterations, which was set at 250,
as the time taken to run 25,000 iterations was excessive.

For consistency’s sake the single point crossover (prob-
ability: 0.9) and polynomial mutation (probability: 0.01)
operators were used in each run. In future work we will
look at the effect of tailoring these operators using, inter
alia, the operators available in the jMetal library.

6. RESULTS

At this stage, we restrict ourselves to a qualitative analy-
sis of the performance of these metaheuristics. Figures 4 to
7 show the comparative performance of the metaheuristics
we have applied to the experiment flow optimisation prob-
lem. In future work we intend to carry out quantitative
comparisons of these metaheuristics, via binary quantita-
tive comparisons, such as Two Set Coverage and Two Set
Hypervolume (examples of these methods are available in
[9]).

Each set of points is the set of results found in 20 runs over
the set of 100 trials. The more closely these points coalesce
around a line, the more reliably the metaheuristic returns



+ PAES
< 10° SPEAZ

Wait Time

0 &0

Plates
Trials

Figure 4: SPEA2 and PAES performance: 20 runs
on data for 100 trials. The Pareto fronts discovered
by the PAES metaheuristic contain individuals that
dominate those discovered by SPEA2, but SPEA2
explores more of the Pareto front

the same front on each run. The more “rightward” the line,
the more optimal the front, that is: the more trials, fewer
plates and most exhausted queue time each batch contains.
The longer the length of the line from the minimum to the
maximum values for each axis, the greater the spread of
results discovered in the population.

+ NSGA-II
5 SPEA2
x10

5 %
By,
4 e
.
o By,
Es e,
= g,
5 N
=2 b
“
iy
i
1 ﬁ*ﬂ
%ﬁ
oy,
[¢]
o}
60
40 20
20 40
0 60
Trials Plates

Figure 5: SPEA2 and NSGA-II performance: 20
runs on data for 100 trials. Both metaheuristics
result in similar Pareto fronts.

This section presents the results for the metaheuristics
evaluated. Section 7 discusses the implications of these re-
sults in depth.

Figures 4 and 5 show the behaviour of the three MOGAs:
PAES, NSGA-IT and SPEA2. SPEA2 and NSGA-II achieve
similar results. The fronts that they find are near-identical,
with SPEA2 covering more of the Pareto front. PAES covers
much less of the Pareto front. However, the fronts that

PAES identifies are superior to those uncovered by either
NSGA-II or SPEA2.

Figures 6 and 7 show the performance of the the hy-
brid scatter search metaheuristic, AbYSS, and the parti-
cle swarm optimiser, OMOPSO, with SPEA2 shown for the
purpose of comparison. AbBYSS finds a similar front to
both NSGA-IT and SPEA2. However, it truncates the front,
and thus does not return values for the lower boundaries of
the Pareto front. Nevertheless, it does result in a somewhat
better front than either NSGA-II or SPEA.

+ AbYSS
5 SPEAZ
x10

Wait Time

—_

40

20 40

Trials Plates

Figure 6: SPEA2 and AbYSS performance: 20 runs
on data for 100 trials. The Pareto fronts returned
by AbYSS dominate those returned by SPEA2, but
ADbYSS explores less of the front than SPEA2.

OMOPSO (Figure 7) results in a population that covers
less of the front than those populations identified by SPEA2
and NSGA-II, but it identifies superior points to either of
these methods, and to AbYSS. The fronts that OMOPSO
returns are similar to those returned by PAES.

Mean runtimes were calculated for the five metaheuristics.
The PSO OMOPSO was run over 250 iterations rather than
the 25,000 generations that were run for the MOGAs and
AbYSS. Performance at this number of iterations was simi-
lar to the performance of the other metaheuristics. Runtime
for each metaheuristic is, on average, less than two minutes,
with AbYSS and OMOPSO having mean runtimes under
one minute. For a batch process, all of these runtimes are
acceptable.

7. CONCLUSION

Each of the evolutionary multi-objective optimisation meth-
ods applied to the problem returned Pareto fronts that con-
tained individuals that represent efficient batches of trials.

The particle swarm method, OMOPSO, and the MOGA
PAES returned the most efficient batches, but covered only
a fraction of the front. It is notable that both of these ap-
proaches experienced particular difficulties with the lower
part of the Pareto front (few trials, few plates and less ex-
hausted queue time). This is the area of the front that is
most rugged: small changes in the number of trials lead to
proportionally large jumps in the number of plates required
for example.



+ OMOPSO
5 SPEA2
x10

Wait Time
w

60 20

20 40

Trials Plates

Figure 7: SPEA2 and OMOPSO performance: 20
runs on data for 100 trials. The Pareto fronts dis-
covered by the OMOPSO metaheuristic contain in-
dividuals that dominate those discovered by SPEA2,
but SPEA2 explores more of the Pareto front than
OMOPSO

Both OMOPSO and PAES have aggressive strategies for
adding solutions to the archive. This extra selection pressure
is likely to be responsible for both the higher performance
of these metaheuristics on the experiment flow optimisation
problem, and for the lower diversity in the resulting popula-
tions. It may be necessary to accommodate a higher number
of dominated solutions in the parent population than are re-
tained by these approaches, in order to explore this area of
the search space.

Both SPEA2 and NSGA-II also returned similar fronts
and both manage to explore the rugged territory in the
lower portion of the front. In SPEA2, diversification pres-
sure results from the use of a fitness measure that combines
both a dominance measure and a k-nearest neighbour dis-
tance measure. The truncation operator also exploits the
k-nearest neighbour metric in order to preserve both the
diversity of the population, and the solutions that lie at
the ends of the front. SPEA2 also admits dominated so-
lutions to the archive whenever the set of non-dominated
solutions is smaller than the archive size. The preservation
of dominated solutions may be instrumental in the ability
of SPEA2 to explore the most rugged areas of the Pareto
front. NSGA-II also promotes diversity through the use of
a crowding operator.

AbYSS adopts the crowding distance metric from NSGA-
II for selecting the individuals that will be copied to the
external archive, and the density estimation measure from
SPEA2 is used to determine which individuals should be in
the reference set. As such it is unsurprising that the diver-
sity of the populations returned by AbYSS should approach
that of both NSGA-II and SPEA2. However, AbYSS is still
foiled by the rugged, lower end of the front, perhaps because
of the use of two reference sets: one that privileges diver-
sity and another that privileges dominance. It may be that
the segregation of unfit but diverse solutions prevents the
development of better solutions in the lower portion of the
front, by reducing the opportunity for “diverse” individuals

to mate with fitter individuals.

AbYSS manages to improve on the Pareto optimality of
the front returned by both NSGA-II and SPEA2. The scat-
ter search improvement method, which here, as in PAES,
takes the form of a (1+1) evolution strategy, appears to ex-
ert a notable pressure towards more optimal solutions by
systematically searching the area around each point.

The decision as to which of these metaheuristics best serves
our needs for the experiment flow optimisation problem de-
pends on the use to which the population of individuals
will be put. A Robot Scientist must select a batch of trials
from among the population of batches that allows it to make
the best use of the resources available. From the resulting
Pareto front, a Robot Scientist must choose which batch of
experiments to run together. This may be done by selecting
the batch that is most efficient on one of the given objective
dimensions from among those Pareto optimal individuals in
the front. The dimension chosen depends on the availability
of resources or the number of trials queued.

We do not know, a priori, what the optimal batches for a
given set of trials would be. We do know that an individual
batch that contains more trials, eliminates more queuing
time and requires fewer plates is preferred over a batch that
is weaker in any one or more of those dimensions. To that
end, we prefer a front that contains more efficient individuals
over one that maintains diversity. OMOPSO and PAES
perform better in this respect, and OMOPSO runs slightly
faster than PAES.

We have, at this stage, carried out only qualitative eval-
uation of the performance of these metaheuristics on the
experiment flow optimisation problem. Unary quantitative
comparisons such as Success Counting and Inverted Genera-
tional Distance (see [9] for examples) are not possible as the
true Pareto front of this real world problem is not known.
Future work will include binary quantitative comparisons,
such as Two Set Coverage and Two Set Hypervolume (ex-
amples also available in [9]) on the most promising meta-
heuristics.

Future work will also look at the effect of tailoring the
metaheuristics by using different crossover and mutation op-
erators. It is likely that the metaheuristics examined per-
form differently when using different operators, and that
gains and losses in performance may not be uniform across
all metaheuristics. We will also attempt to discover the ef-
fect of “tuning” the parameters of the metaheuristics and
operators. Finally we will examine the suitability of the evo-
lutionary optimisation approach to solving a problem that
also includes hard constraints, such as the limits on the num-
bers of nutrients that can be dispensed simultaneously. We
will investigate recent advances in constraint handling for
multi-objective evolutionary algorithms, such as the ones
described in [5].

This paper demonstrates that evolutionary multi-objective
optimisation algorithms are an appropriate method of solv-
ing the experiment flow optimisation problem. We have also
demonstrated that there are differences in the performance
of these algorithms on the experiment flow optimisation
problem, and that an aggressive approach is needed, even
at the expense of diversity, in order to find highly efficient
batches of trials.

8. ACKNOWLEDGEMENTS

I would like to thank Maria Liakata and Jem Rowland



of University of Wales, Aberystwyth and Bill Langdon of
the University of Essex for their constructive feedback on

earlier versions.

Thanks are also due to Maria Liakata for

Figure 1 and to David Corney of University College London
for helpful discussions instrumental in developing this work.
This work was supported by BBSRC grant BB/D00425X/1

9.
1]

[4]

REFERENCES

K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A
Fast Elitist Non-Dominated Sorting Genetic
Algorithm for Multi-Objective Optimization:
NSGA-II. In M. Schoenauer, K. Deb, G. Rudolph,

X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel,
editors, Proceedings of the Parallel Problem Solving
from Nature VI Conference, pages 849-858, Paris,
France, 2000. Springer. Lecture Notes in Computer
Science No. 1917.

J. J. Durillo, A. J. Nebro, F. Luna, B. Dorronsoro,
and E. Alba. jMetal: A Java Framework for
Developing Multi-Objective Optimization
Metaheuristics. Technical Report ITI-2006-10,
Departamento de Lenguajes y Ciencias de la
Computaciéon, University of Mélaga, E.T.S.I.
Informatica, Campus de Teatinos, December 2006.

R. D. King, K. E. Whelan, F. M. Jones, P. G. K.
Reiser, C. H. Bryant, S. H. Muggleton, D. B. Kell,
and S. G. Oliver. Functional genomic hypothesis
generation and experimentation by a robot scientist.
Nature, 15, January 2004.

J. Knowles and D. Corne. Approximating the
nondominated front using the pareto archived
evolution strategy. Evolutionary Computation,
8:149-172, 2000.

A. Kurpati, S. Azarm, and J. Wu. Constraint
handling improvements for multiobjective genetic
algorithms. Structural and Multidisciplinary
Optimization, 23:204-213, April 2002.

A. J. Nebro, F. Luna, E. Alba, A. Beham, and

B. Dorronsoro. AbYSS: Adapting Scatter Search for
Multiobjective Optimization. Technical Report
ITI-2006-2, Departamento de Lenguajes y Ciencias de
la Computacién, University of Malaga, E.T.S.I.
Informatica, Campus de Teatinos, 2006.

S. O’Hagan, W. B. Dunn, M. Brown, J. Knowles, and
D. B. Kell. Closed-loop, multiobjective optimization of
analytical instrumentation: gas
chromatography/time-of-flight mass spectrometry of
the metabolomes of human serum and of yeast
fermentations. Anal. Chem., 77:290-303, January
2005.

K. Sastry, D. D. Johnson, A. L. Thompson, D. E.
Goldberg, T. J. Martinez, J. Leiding, and J. Owens.
Multiobjective genetic algorithms for multiscaling
excited state direct dynamics in photochemistry. In
GECCO ’06: Proceedings of the 8th annual conference
on Genetic and evolutionary computation, pages
1745-1752, New York, NY, USA, 2006. ACM Press.
M. R. Sierra and C. A. C. Coello. Improving pso-based
multi-objective optimization using crowding, mutation
and epsilon-dominance. In Evolutionary
Multi-Criterion Optimization, Third International

(11]

Conference, EMO 2005, Guanajuato, Mexico, March
9-11, 2005, pages 505-519. Springer, 2005.

L. N. Soldatova, A. Clare, A. Sparkes, and R. D.
King. An ontology for a robot scientist.
Bioinformatics, 22:e464—e471, 2006.

E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the Strength Pareto Evolutionary
Algorithm. Technical Report 103, Swiss Federal
Institute of Technology (ETH), Zurich, ETH Zentrum,
Gloriastrasse 35, CH-8092 Zurich, Switzerland, 2001.



