A framework for Grid-based failure detection in an automated
laboratory robot system

C. Foulston and A. Clare

Department of Computer Science, University of Wales Aberystwyth,

Penglais, Aberystwyth SY23 3DB
afc@aber.ac.uk

Abstract

We have designed and produced a framework for
Grid-based failure detection to monitor and re-
port on our automated laboratory equipment and
the Robot Scientist. Its features are distributed
agent based monitoring, selective reporting and
report dispatch brokering. Monitoring and re-
porting agents can be distributed due to the loose
coupling of Web Services, enabling a large enviro-
ment of parameters to be monitored. Reporting
is via different mediums such as e-mail, instant
PC alerts and text messaging, though any type
of agent can sign up for new reports, making the
system expandable to a variety of needs. Dispatch
brokering allows agents and humans to sign up for
the latest reports for further analysis.

1 Introduction

The “Robot Scientist” is a state-of-the-art
e-Science system for automating the scientific pro-
cess [3]. It comprises automated and integrated
laboratory equipment together with intelligent
software for creating hypotheses, designing the
high throughput experiments and analysing the
results. The system is currently used to con-
duct yeast mutant growth experiments in order
to investigate gene function in metabolic path-
ways. The intelligent software provides closed
loop learning, whereby the results of the previous
experiment are fed back into the system in order
to refine hypotheses and choose and conduct the
next round of experiments automatically.

The system must function unaided for long pe-
riods of time. The average yeast growth period
measured will be 5 days, and experimental batches
are overlapped, so that operation is continuous.
The equipment is located in a laboratory in a dif-
ferent room to that in which the Robot Scientist
project researchers work. The yeast is grown up in
a pregrowth phase lasting approximately 24 hours,
which is followed by a growth phase lasting a cou-
ple of days. Important events may happen at any

time of day or night, and our lab technician will
not always be around to watch.

We need an remotely accessible automated fail-
ure detection system for the Robot Scientist. This
should:

monitor equipment

log information, errors and warnings

take intelligent decisions and act upon them
notify users of problems by a variety of means
provide users with information (current and
historical) and suggest possible actions to be
taken

e keep records of previous problems, solutions
and actions

In order to make intelligent decisions about
whether a potential failure has been detected, and
what action to take, we need to employ a variety
of reasoning methods in the system, analysing a
wide range of data. The detection processes are
discussed in Section 3.

The failure detection system has to be available
to monitor remotely from a variety of OS plat-
forms, and it has to be secure and reliable. Pro-
viding Web Services interfaces to its functionality
is a good way to achieve this, and we chose to
use the Globus toolkit [2] to provide some of the
basic infrastructure. The interfaces and general
software architecture is discussed in Section 4.

2 Background

2.1 Robot Scientist

The Robot Scientist uses a large collection of lab-
oratory automation equipment to conduct the ex-
periments that are designed by the artifical intelli-
gence software. The equipment is capable of grow-
ing yeast knockout mutant strains under a vari-
ety of experimental conditions. Over 1000 exper-
iments can be performed each day, and the main
experimental outputs are optical density readings
that are used to plot the growth curves of the yeast
strains. A large amount of experimental metadata



is also available from each component of the lab
automation equipment.

The robot components are controlled and co-
ordinated by software. The whole system is con-
tinually supplied with descriptions of experiments
that have been designed to test hypotheses cre-
ated by Al software. The system should run con-
tinuously, 24 hours a day, 7 days a week.

Any failure of this system needs to be detected
as early as possible, so that action can be taken,
and the equipment can be used to its maximum
potential. A single fault can cause the entire sys-
tem to be unusable, and all experiments currently
running (which may have been running for days)
may need to be abandoned. Faults can range from
an obvious show-stopping breakdown to a slight
variation of some condition, which could still have
a disastrous effect on the results of experiments.

2.2 Existing e-Science labs and fail-
ure detection systems

Very little laboratory-based and experimental
equipment is actually Grid-enabled yet. The Grid
is still an evolving concept and toolkits such as
Globus have not yet matured enough for most in-
dustrial use.

Ko et al [4] describe a laboratory with a web-
based interface, designed to be accessed remotely
by students to run coupled tank control experi-
ments. The system provides feedback to the stu-
dents, by video, audio and by data, such as plots
of response curves. The students can access the
remote laboratory 24 hours a day. The potential
of remote biology labs used for education is ex-
plored further by Che [1].

NEESgrid is a large grid-based system for earth-
quake simulation and experimentation. Laborato-
ries are linked via grid infrastructure to compute
resources, data resources and equipment (http:
//it.nees.org/). Various instruments and sen-
sors can be monitored and viewed remotely, and
NEESgrid provides teleobservation and telepres-
ence via video streams, data streams and still im-
ages.

The DAME project is a major e-Science pi-
lot project providing a distributed decision sup-
port system for aircraft maintenance. They pro-
posed a Grid based framework for fault diagno-
sis and a implementation for gas turbine engines
[5]. Their work is perhaps the most similar to
ours, though for a very different application, and
used Globus Toolkit version 3 to provide web ser-
vice interfaces. They note the benefits of using
a loosely coupled service-oriented architecture to
implement a variety of fault diagnostic services.
A engine simulation service, case based reason-
ing services and event sequence/history monitor-

ing services are provided.

Otherwise, fault detection in Grid-based sys-
tems has so far been mostly targeted towards
analysis of network faults, and detection of prob-
lems in compute clusters. Tools for monitoring
and fault detection exist, but are currently mostly
restricted to monitoring network traffic and gen-
eral performance of Grid services (response time,
availability, etc). Globus has a Monitoring and
Discovery System (MDS) component that allows
querying and subscription to published data. It
is intended to be an interface to other monitor-
ing systems, and to allow a standard interface to
the data. Other general grid service monitoring
tools include Gridmon!, Network Weather Ser-
vice?, Netlogger®, Inca* and Active Harmony®.
An annual Grid Performance Workshop® reflects
current research in these systems.

Our laboratory automation system is complex
and contains many potential sources of failure, in-
cluding human error, hardware error and experi-
mental error. In the next section we describe these
and the methods of failure detection in more de-
tail.

3 System requirements

3.1 Sources of information

The primary sources of information for use in de-
tecting failure will be:

Equipment metadata logs: Each piece of
equipment logs information such as event
timings and internal settings and variation.

Experimental data/observations: The opti-
cal density readings of the yeast can show
that something is wrong. For example, an os-
cillating pattern of readings for a microtitre
plate lead us to discover that the two incuba-
tors between which the plate was being cycled
were set to agitate at different speeds.

Experimental expectations: The Robot Sci-
entist work is perhaps unique in having the
whole process automated, so we can make
use of the fact that the expected result of ev-
ery experiment is automatically available for
comparison to the actual result. Of course,
an unexpected result may also be due to the
discovery of new scientific knowledge.

1Gridmon: http://www.gridmon.dl.ac.uk/

2NWS: http://nws.cs.ucsb.edu/

3Netlogger: http://www-didc.1bl.gov/NetLogger/

4Inca: http://inca.sdsc.edu/

5 Active Harmony: http://www.dyninst.org/harmony/

6Grid Performance Workshop: http://www-unix.mcs.
anl.gov/~schopf/GPW2005/



Temperature/humidity sensors: These are
scattered throughout the system, monitor-
ing the ambient conditions, rather than
instrument-specific conditions.

Webcams: In the future, image recognition
should be able to distinguish some fault
states, and provide more information on the
causes of robotic arms becoming blocked, or
tips being dropped. Experiment imaging,
such as closeups of plates or cells could also
provide valuable information.

3.2 Types of failure

Hardware error: The equipment consists of
many integrated automated lab machines. These
include incubators, liquid handlers, a washing sta-
tion, a centrifuge, microplate readers and several
robot arms and shuttles for moving plates around
the system. Each of these components has a soft-
ware interface which can report errors that the
machine can detect (such as being wrongly ini-
tialised, overheating, being full, or dropping what
it was carrying). We have already experienced
power cuts, freezer motor seizure, dropped tips,
misaligned robot arms, and a host of other hard-
ware issues. Human error can also contribute to
hardware reports. If the technician did not pro-
vide the system with the enough plates for the
experiment then at some point there will be none
left on the stack to take (and similarly for emp-
tying of waste). While human errors are mostly
avoidable, they still occur. Hardware errors due
to imperfections in plastic tip mouldings, cable
stretch over time, loss of vaccuum suction, etc,
are much more difficult to avoid.

Experimental error: Some errors may be less
obvious, and may only be noticeable when the ex-
perimental results are interpreted in context, or
compared to some model of what was expected.
For example, if the liquid hander is not aspirat-
ing the quantity of liquid that it claims to have
aspirated, this may show up in altered plate read-
ings. Similarly, if the plate readings were not as
expected this could also point to altered growth
temperature, contamination or misplaced strains.
If wells at one side of a plate grew less well than
wells at the other side it might be suspected that
conditions across the plate were uneven, for ex-
ample air flow, oxygen availability, evaporation or
temperature.

Software error: Software errors are much
more difficult to detect. There is a huge field of
research devoted to the design of error-free soft-
ware, incuding methods for debugging, refactor-
ing, formal specification, and code development
practices. With existing, pre-installed software
our aim is simply to detect if a fault has occurred

Distributed Fault Detection Framework

Grid Web Services

Agent Services

Dispatch
Broker

Reporting Services
1 1

Monitoring Services

Host Monitor Plate Times
Tomporature
Monitor

SMS
Reporter

Email
Reporter

Instant

Server

Miscellaneous

Instant
Repart Commen
Cliant

Network Services

| Database : sms P Email RMI

Figure 1: Framework overview, with examples of
the Monitoring Agents

that is likely to have a software origin so that it
can be fixed. However, these can be very complex
and manifest in unusual ways.

3.3 Detection Methods

A variety of different methods will be necessary
to detect the different types of faults. These will
include case based systems, model based systems,
use of historical data, use of experimental expec-
tations and hypotheses, use of event data and pre-
cise timings, knowledge of stock control of nutri-
ents, yeast strains and growth media, use of hard-
ware logs and error codes, and many other analy-
ses.

4 Implementation

4.1 Framework

The framework is abstract enough to be applicable
to most lab automation systems. Figure 1 shows
the components of the framework.

4.2 Reporting Agents

The current reporting agents that bind to the dis-
patch broker are a text message reporter, an email
reporter and an instant desktop reporting tool.
Reporting to a user’s machine is the quickest way
but users may not always be at their desks. There-
fore text messaging is an important method for
urgently attracting attention. Selective reporting
is used here to specify times for this as researchers
are not always on duty.



4.3 Abstract Monitoring Agents

Example implementations of the abstract monitor
are:

e The incubator monitor, which monitors tem-
perature, humidity, Oz and CO;3 levels of
three incubators. This reports to the dis-
patch broker when thresholds are not met.
The yeast must be grown in a stable, con-
trolled and measurable enviroment. Only
with a wide array of different environmental
state monitors will it be possible to ensure
all experiments were done in a similar envi-
roment.

e A host monitor which simply monitors the
main control PC running the robot. The
host monitor’s job is to ensure that all con-
trol PCs are up and running at all times and
to report this as a high alert to the dispatch
broker. When PCs fail this will waste ex-
perimental time and most likely ruin current
experiments.

Monitoring Agents are separated from the busi-
ness of making decisions about who to report to or
how to report by the dispatch broker. This allows
a Monitoring Agent to focus just on the detail of
monitoring. This also allows Monitoring Agents
to be composed of other Monitoring Agents in a
hierarchical manner. A more complex Monitor
that relies on several aspects of the system can be
built using the results of several low level Monitor-
ing Agents, hence avoiding time-consuming repe-
tition of low level tests.

Parameters that need monitoring come from
many different systems such as databases, file-
based data logs, computational tasks or querying
serial or USB interfaces to discover continuous pa-
rameters, and these may not be in close quarters,
therefore it is essential to have a loose coupling
for agents.

4.4 Dispatch Broker

The dispatch broker recives reports from any
agent and notifies all outbound agents that a new
report has been delivered. This ensures the loose
coupling between detecting and reporting.

4.5 Selective Reporting

This allows users to select which reports they wish
to receive.

This is to ensure that information passed on
is relevant in the context of the user it is sent
to. On such a large system as the Robot Scien-
tist, researchers with completely different back-
grounds will be interested in different reports. Bi-
ologists may not want to concern themselves with

computer hardware faults and computer science
researchers may not want to concern themselves
with warnings about low liquid levels. This uses
a relational database where the relations between
researchers and monitors are stored.

5 Discussion

Detecting and recording errors and failures is es-
sential for any highly complex system of many
different parts. Even fully automated biological
experiments are prone to noise, and careful moni-
toring of conditions and experimental metadata is
crucial for correct interpretion of results. We need
to be able to detect problems as they occur, rather
than days later when valuable experimental time
and resources have been wasted.

The failure detection system that has been de-
veloped is general enough to be applicable to most
laboratory automation environments. It uses
Globus/Web Services to provide a loose coupling
of components. It is in place on the Robot Scien-
tist with the most immediately essential monitor-
ing agents, and we now need to extend its capa-
bilities with a wide variety of more complex mon-
itoring agents. More intelligent agents will pro-
vide diagnosis as well as detection, and intelligent,
user-friendly diagnosis of biological problems will
be an interesting area of research in its own right.

Acknowledgements

The authors would like to thank Dr Andrew
Sparkes for valuable discussions.

References

[1] A. Che. Remote biology labs. In E-ducation With-
out Borders, 2005.

[2] 1. Foster. Globus toolkit version 4: Software for
service-oriented systems. In IFIP International
Conference on Network and Parallel Computing,
pages 2—13. Springer-Verlag LNCS 3779, 2005.

[3] R.D. King, , K. E. Whelan, F. M. Jones, P. G. K.
Reiser, C. H. Bryant, S. Muggleton, D. B. Kell,
and S. G. Oliver. Functional genomic hypothesis
generation and experimentation by a robot scien-
tist. Nature, 427(6971):247-252, 2004.

[4] C. C. Ko, B. M. Chen, J. Chen, Y. Zhuang, and
K. C Tan. Development of a web-based laboratory
for control experiments on a coupled tank appa-
ratus. IEEE Transactions on Education, 44(1),
2001.

[5] X. Ren, M. Ong, G. Allan, V. Kadirkamanathan,
H. A. Thompson, and P. J. Fleming. Service ori-
ented architecture on the Grid for FDI integra-
tion. In Proc 8rd UK e-Science All Hands Meeting
(AHM 2004), 2004.



