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Abstract

This paper describes an industrial application of case-based reasoning (CBR) in
the aluminium die-casting industry: the setting of parameters of a pressure die-
casting machine for a specific die. As well as describing the application, the paper
shows how the system has evolved. The use of cases has given the system a
flexibility which has enabled it to be used in ways that were not foreseen at the
outset of the project.

The pressure die-casting application is a good example of a common problem:
the correct setting of system parameters depending on a set of input values. The
paper discusses the general use of CBR for deciding on parameter values, and
describes the lessons that have been learned through the construction of the die
casting parameter setting system.

This paper appeared in the 1% UK Workshop on Case-based Reasoning, January 1995,
and an updated version is in Progress in Case-based Reasoning, lan Watson (ed), pp121-
133, Springer Verlag 1995.

1. Introduction

This paper describes Wayland, a computer program which applies case-based reasoning
[Kolodner] to the problem of setting parameter values on an aluminium pressure die-casting
machine.

There have been previous applications of CBR for deciding how companies should operate
machinery, notably Clavier [Hennessy and Hinkle, Hinkle and Toomey]. Wayland differs
from Clavier in two important ways. Firstly, it performs approximate numerical matching to
past cases, where Clavier only does exact textual matching. Secondly, adaptation of the
result is an important part of Wayland, whereas it seems to have been dropped from
Clavier.

Wayland has been deployed for two years, and demonstrates the clear benefits that such a
system can provide. The paper describes the mechanics of the Wayland program and the
foundry’s experience in using it. Finally, the paper considers the wider possibilities of
applying case-based reasoning to deciding on parameter values, and draws out the lessons
learned from implementing the pressure die-casting system and from observing how
different types of user access it.



2. The pressure die design problem

Pressure die casting involves injecting molten metal at very high pressure into a mould (a
die), where it cools to make a casting. Figure 1 illustrates many of the main objects involved
in the process. Some of the key concepts are:

Gate. The hole through which the molten metal enters the impression part of a die
(the shape of the casting to be made). The gate is usually kept to a narrow slit to
reduce the cost of the casting. It has to be removed from the casting, and if the gate is
more than about 3mm deep, the excess has to be sawn off rather than clipped.
Consequently, both the gate depth and the gate cross sectional area are of interest.

Sleeve. The tube into which the molten aluminium is poured so that it can be pushed
by the plunger into the die.

Tip. The tip is the end of the plunger by which the metal is pushed into the die.
Smaller tips allow higher pressures to be exerted on the die. Larger tips allow
quicker filling of the die.

Number of impressions. Some dies make more than one component per casting. For
example a die which makes four components from a single casting is referred to as a
four impression die.

Cycle time. This is the total time to make a casting, from one injection of metal to the
next. It includes filling the casting (cavity fill time), cooling time, and extraction of
the component from the die.

The terms given here are those used in die casting of aluminium. Some terms and concepts
will vary in the casting of other metals.
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Figure 1: A typical pressure die-casting situation

Machine settings are critical for successful pressure die casting, and will always be a
compromise between factors such as cost of producing the casting, maximizing the die life,
and quality of the final product.



If the machine settings for a new die are badly wrong, then that fact can affect safety. For
example, the combination of small tip size, high pressure and small casting can cause the die
to “splash”, i.e. the die opens momentarily, spraying molten aluminium at temperatures in
excess of 500°C. The ability to calculate values for machine settings during die design also
has commercial implications when bidding for a new casting contract.

There are no generally applicable formulae for calculating values for pressure on metal, gate
velocity, cycle time etc. for a given set of conditions, although different engineering bodies
have attempted to present formulae to rationalise the process. The different formulae give
vastly differing results even for identical operating conditions, so there is no agreed
algorithm for calculating results.

The reason for the discrepancies between these formulae is that there are a number of sets of
conditions under which a casting can be made. The die parameters are strongly interrelated,
making the problem non-decomposable. A change in one parameter can be compensated for
by altering another.

Case-based reasoning is an appropriate technology for this problem, because a foundry will
tend to have a particular way of working. Foundries which have not built up a body of
experience about particular types of casting might use the formulae provided by one of the
engineering bodies, but foundries with rather more experience will rely on their own
experience. Engineers will refer to records of previous dies with similar input requirements,
and adjust the parameters for a similar die to reflect the different requirements of the new
die being built. The records of previous dies are good examples of working compromises
between the different operating requirements: such compromises might well have been
found by costly adjustments performed in the foundry after the die was built.

The Wayland system, described in the following section, automates the identification of past
dies with similar characteristics, alters the die settings to take into account the differences
between the past die and the new one being designed, and validates that the new solution is
within all design limits.
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Figure 2: Wayland input form with values filled in



3. What Wayland does

Wayland is available on the foundry computer network, and so users can quickly obtain
answers about die design at their own desks. When they start running Wayland, they are
presented with a form which they can tab through, filling in the requirements of the new
casting: weight, size, number of castings made at one time and the characteristics of the
shape. Figure 2 is a screen dump of a filled in form with values specified for each of the
input fields.

Clicking on the Search button shown in figure 2 will cause Wayland to produce the best
matching previous case. This is presented in three windows.

1) Details of the previous case that best matched. This window contains the
requirements of the previous case plus the machine setting values being used for that
die. This is shown in figure 3.

2) An adapted version of the previous case with the best values for this new die. This
window is placed on top of the window with details of the previous case, and
slightly to the left of it. This allows the user to compare the two sets of values and to
see how the different input requirements have altered the output specification.

3) A picture of the previous casting. The values input in figure 2 do not specify the
new die perfectly (they only give an approximation of its shape). The picture allows
the user to decide whether the previous case that was selected really is like their new
design.

= Results derived from 4887 - Match: 96.9%

Weiqht of one casting [q) 450
Weight of castings and overflows (g) 200
Weight of total shot (g) a40
Number of slides 0
Projected area of one casting (ins sq) 30.00
Total projected area (ins sq) 43.00
Averaqge wall section (mm) 4.00
Number of impressions 1
Metal type Aluminium
Machine type 200 Tonne
Gate velocity (cmisec) 3067.61
Cavity fill time (millisecs) 43.43
Length of stroke (cm) 2.00
Percentaqe fill 32.29
Gate area (mm¢2) 138.00
Gate width (mm) 69.00
Gate depth (mm) 2.00
Plunger velocity (cmisec) 110.00
Pressure on metal (P31) 4640.00
Tip size (mm) 70
Cvcle time (secs) 48

Figure 3: Best matching previous case from Wayland



If the user is not happy with the past case that was matched with their problem, then they
can press the Next button to look at how further cases match their problem. Each time the
user presses the Next button, the next best matching case will be displayed until the system
has shown all matching cases.

4. How Wayland works
4.1 Overview

When the user runs the Wayland program to obtain parameter settings for a new die, the
specifications of the die are input as in the example shown in figure 2. The input details are
matched against the details of previous dies, and the most appropriate past case is selected
from the case base. Finally, rules are then applied to make sure that the best possible
solution for the new die is reached.

The rest of this section describes the details of this process, giving examples of cases and
rules.

4.2 Finding the best matching case

Wayland has a case base of some 200 previous die designs, extracted from a database of
records of actual die performance maintained at the foundry. Only dies with satisfactory
performance have their values entered into the case base, so the foundry personnel are
confident that each case provides a good basis for calculating new solutions.

Cases are fixed format records, with a field for each of the values shown in figure 3. Some of
the fields may be blank, if complete records for a die have not been available. Here is the
format of a typical case record.

CASE INSTANCE die_no_5014 1S
weight_of casting = 240.00;
weight_of casting_and_overflows = 310.00;
weight_of total_shot = 520.00;
no_of slides = 0.00;
projected_area_of casting = 19.50;
total_projected_area = 35.50;
average_wall_thickness = 2.75;
no_of impressions = 1.00;
machine_type = t400;
metal_type = Im24;

SOLUTION IS
imagefile = 'dn5014.gif",
gate_velocity = 6414.09;
cavity_fill_time = 13.77;
length_of stroke = 3.10;
percentage_fill = 16.24;
gate_area = 135.00;
gate_width =90.00;
gate_depth = 1.50;
plunger_velocity = 225.00;
pressure_on_metal = 8000.00;
tip_size = 70.00;
cycle_time = 35.00;

END;



Preliminary pruning of the case base is done by only retrieving cases for the same type of
die-casting machine (e.g. only dies used on the 400 ton machine). Each of the retrieved cases
is then assigned an overall match value. This is done by assigning a matching mark to each
field and summing the total. Each field is given a weight which expresses its significance
(e.g. number of impressions is an important field to match: it specifies how many of the
parts are made at once in the die). Matches can be specified as exact (e.g. for number of
impressions) or approximate (for items such as weight of casting) where the mark awarded
will depend on how close the match is.

The case with the highest overall mark is the best match, and will then have rules applied to
it in order to produce the kind of answers shown in figure 3.

4.3 Adapting the best case to fit the new circumstances

Rules are applied to the specification values and to the answers from the past case in order
to:

calculate further information from the specification

take account of the differences between the past case and the new problem

change parameters when safety criteria are violated

decide whether the final result is good enough

This section explains what each kind of rule does, and gives an example of such a rule in
Wayland.

Calculating further information from the specification

The simplest type of rule calculates a necessary value directly from the information that the
user has given. For example, the total volume of the metal in the casting and overflows is
needed in order to calculate other values such as length of plunger stroke. It can be
calculated by the following rule:

REPAIR RULE find_volume_of_casting_and_overflows IS
WHEN volume_of_casting_and_overflows IS UNDEFINED
THEN
EVALUATE volume_of casting_and_overflows TO
weight_of_casting_and_overflows 7/ 0.0026;
END;

Adapting values from the past case for the new die

This type of rule takes results from the past case and adapts them to the differing
circumstances of the new die. For example, the following rule uses the length of the plunger
stroke for filling the new die (calculated by the first kind of rule) and the value for plunger
velocity taken from the past case, and calculates the time it takes to push the metal into the
die.

REPAIR RULE find_cavity_fill_time IS
WHEN cavity_fill_time IS UNDEFINED
THEN
EVALUATE cavity_fill_time TO
(length_of _stroke / plunger_velocity) * 1000;
END;



Changing parameters when safety criteria are violated

Some of the rules check whether the operating values are within safe boundaries and change
them if they are not. The following example checks that the velocity of the metal through the
gate is not too high. If it is, then it increases the size of the gate, so that the velocity will be
reduced. The command “REPAIR” states that all rules should then be re-evaluated. This
enables the rule to fire more than once if the gate velocity is still too high.

REPAIR RULE gate_velocity too_big IS
WHEN gate_velocity >= 5000
THEN
EVALUATE gate_area TO gate_area + 10;
EVALUATE gate_depth TO (gate_area / gate_width) / no_of_impressions;
pr(['Warning: changed gate area: gate velocity too big']);
pr(['Warning: changed gate depth: gate velocity too big']);
REPAIR;
END;

Deciding whether the final solution is safe

Some problems caused by the difference between the past case and the new die are too
complex for the Wayland program to deal with in the way shown above for gate velocity. In
those cases, the user is warned about the problem. The following example warns that the job
is too large to run on any of the machines in the foundry.

REPAIR RULE no_machine_big_enough IS

WHEN total_projected_area >= 160
THEN

pr(['Warning: projected area too big for 700 tonne machine.’]);
END;

5. Benefits of Wayland

Wayland has been available at the foundry for more than two years, and is used by several
different kinds of foundry personnel. They are interested in different information from the
case base. For some users, the information that they actually want is not held on-line in the
case base, but the best matching case can be used to index further information that is held
not on computer but in manual files. Such users still find this much faster and more effective
than browsing through paper records of past dies to find relevant information.

The main types of user can be categorized as:
= Sales staff
= Die designers
= Foundry engineers
5.1 Sales staff
Wayland is in daily use to provide estimates of the cost of producing a new component.
Sales staff are most interested in cycle time, although close matches in the case base are also

used to access off-line information such as the cost of building the die to manufacturing such
a component.



Before Wayland was available, sales staff had either to obtain an accurate estimate from an
experienced engineer (taking several hours), or give a 'finger in the air' estimate: very
unsatisfactory in the highly competitive foundry industry.

5.2 Die designers

A close match with an existing die design can be helpful when designing a new die. It can
enable the designer to reuse an existing design for 'running and gating' (the layout for metal
feeding into and overflowing from a die). This can save several days work. More
importantly, it bases the new design on a previous design known to be successful, and so
minimises the risk that the new design will not work properly, or will have a short lifespan.

5.3 Foundry engineers

This is the area where Wayland was originally intended to be used. By providing the most
accurate available values for parameter settings, it can save significant setup time when a
new die is first being installed. Previously, several days might have been spent
experimenting with settings such as plunger velocity, in order to produce acceptable
castings. In some cases, the physical shape of the die needed to be altered in order to
produce acceptable results, causing further expense and loss of production. The use of
Wayland has significantly reduced this time.

The Wayland case base is maintained by one of the foundry engineers, and perhaps the best
measure of its success is that he is happy to have the task of maintenance. The amount of
time it saves him and his colleagues far outweighs the effort of occasionally adding further
cases.

The engineers are imaginative in their use of Wayland and produce new ways in which it
can help them. One of the most recent innovations was using Wayland in troubleshooting.
The engineers had had problems with one particular die for some time, and had been unable
to make it work well consistently. An engineer decided to enter its parameters to Wayland.
There was a good match on an existing case, and Wayland recommended a larger gate area
than there was on the problem die. The gate on the problem die was altered accordingly,
and the problems went away.

5.4 Summary of benefits
The benefits of Wayland can be broken into three main areas:

It replaces opinion with reference to actual experience. In the troubleshooting
example just quoted, different engineers had different opinions of how to fix the
problems. Wayland referred to a good previous solution and used that as a basis for
its recommendations.

It saves engineer time. Much less time needs to be spent altering dies or changing
parameters.

It reduces scrap. Less bad castings are made, because the parameters are correct.

It produces accurate estimates. This could be done before, but only by expending
engineer time on a very speculative exercise. The foundry can produce much more
competitive tenders in a fiercely competitive market.

Perhaps the most telling item in favour of the system us that the benefits clear enough to
decide to use Wayland elsewhere. The foundry where the system has been deployed is part
of a group of three foundries, and the system is also being deployed in the other two



foundries in the group. This will be done using their own case bases, as their methods of
working and typical dies are different.

6. Lessons for this type of system

This section draws together the lessons that have been learned from the development of
Wayland, and discusses how generally applicable they are.

6.1 Characteristics of the problem

Wayland has a database of input values and corresponding output values, where the
relationship between the two has been obtained from past experience of correct solutions to
similar problems. The further characteristics that made case-based reasoning a good solution
to the problem were;

Large value space for inputs and outputs. Many of the input variables are
continuous. and can vary quite widely, giving an infinite combination of possible
sets of inputs.

Relationship between inputs and outputs unclear. There are no complete
algorithms to give reliable output values for all inputs. The multi-dimensional nature
of the problem would make it very difficult to discover such an algorithm.

Local adjustment of parameters provides reasonable results. While there are no
global algorithms for providing correct answers, it is possible to adjust an answer
locally so that the new solution works correctly for the new problem.

A completely accurate solution is not needed. There is a space of correct solutions,
where the system will work adequately.

Wayland is effective because its case base provides local reference points in the global space
of all possible casting problems. The repair rules then provide both local adjustment, and
verification checks that the new answer does not violate any global constraints.

The task which Wayland carries out can be identified in other industries as well. Obvious
examples are in related industries. For example, we are constructing a system for a similar
problem in a plastic injection moulding company. However, in order to illustrate that such
problems are common throughout engineering, we will give two further examples:

Design of standard highway bridges. Highway bridges are the most common type
of bridge built in modern times, and large construction companies have designs for
many such bridges. A bridge design only tends to be reused where an engineer has
specific experience of a previous similar design. We have constructed a prototype
working in a similar way to Wayland, which accesses previous designs with similar
characteristics [Moore et al.]. This would enable many of the same features that
Wayland does (accurate estimating, method of construction for previous design).

Deciding on mix when making steel. When scrap steel is added to a blast furnace, it
is necessary to decide how much lime and iron to mix together in order to make the
right quality of steel. The answer will depend on the type and amount of scrap being
added. Deciding on the correct mix seems to be an arcane skill, where previous
experience counts for much. Such experience is available in abundance in the form of
previous records of mixes and whether they were successful or not. Again, minor
repairs to the closest solution would give a fairly accurate answer.



6.2 Case-based reasoning is an effective solution

It is reasonable to consider whether other technologies might not provide a better solution to
the kinds of problem just described.

The minimalist approach

Does this problem need case-based reasoning? Could it not be solved by putting past cases in a
spreadsheet or database and writing some macros or C code to access relevant cases.

The answer is undoubtedly "yes, it could be solved with more conventional technology".
The advantage of CBR is that it makes the knowledge explicit. Both the matching rules and
the repair rules are written in an understandable and maintainable way.

The subsymbolic approach
Why not use a neural net for this type of problem? Nets are excellent at learning to make associations.

It is not clear what examples could be given to a net to train it. A number of past examples
of good solutions exist, but no examples of what is a good match. In effect, the person
constructing the net would be generating weights for fields in order to produce examples to
give to the net, so that it could produce an overall matching expression. It seems easier to
keep the allocation of weights explicit, so that the system is more accountable.

The symbolic approach
Something like this could be built in a knowledge representation language.

Indeed it could. Each case would be an object of class "case type", and you could write a
number of rules to do the matching and adaptation of cases. This would provide a
reasonable solution. The argument against doing this is the same as the argument against
using a spreadsheet. Case-based reasoning provides a more specific paradigm for building
such systems. The case-based reasoning concepts of having a case, performing matching on
the case and then adapting the resultant solution are identifiable in this type of application.
It is reasonable to use a tool which explicitly supports those concepts.

6.3 Design lessons

Given that such tasks exist in different branches of engineering, and that case-based
reasoning with repair rules is an effective solution for such applications, this subsection
discusses issues that arise when building such an application.

Provide flexibility

Wayland was originally designed for one type of user, foundry engineers. Early versions of
the system expected users to enter values for all input fields and to take the best result
provided and use it.

In fact, users have different ways of working. Some do work in the way described
(salesmen, for instance). Engineers prefer to browse through several of the best matches
looking at the information, so we provided the Next button for them. Both foundry
engineers and die designers like the ability to look at all examples of solutions to a particular
kind of problem — all three impression dies with two sliders, for example - so it is important
that they should be able to do this more traditional database retrieval as well.



Provide the maximum amount of information

Such systems are of maximum benefit when users can access all of the information related to
the case. Technical users will want to see the original case as well as the set of adapted
answers that are the new solution. They may want details of the original case which are not
part of the adapted answer. Cost of producing a die is an example of that in Wayland. If that
information is not in the case itself, it is important that the case at least provides a pointer to
where it can be found.

Provide guidelines for interpreting answers

Technical users will have their own opinions as to whether an answer from the system is
valid. For salesmen and other less technical users, it is important to provide guidelines on
how the system should be used. The match has a weight attached to it: what values are good
matches? Warnings are provided when altering significant values in previous cases: when
should the user decide that the warnings mean that the case is not valid. We have provided
a set of written guidelines for the users on these matters. In hindsight, it would have been
better to provide further repair rules which did this interpretation automatically.
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