
Evaluation of AutoSteve data bus support

Jon Bell

Doc. ref. SD/TR/EV/01: October 23, 2003

CONFIDENTIAL

1 Introduction

This report will present an evaluation of the data bus support added to AutoSteve
from version 2.6. This addition to AutoSteve has arguably rendered the need to
implement software for modelling electrical failures in systems that incorporate net-
work components redundant, so this evaluation can be considered an alternative
approach to fulfilling SoftFMEA Workpackage 3 in the original project plan, de-
scribed in (Snooke and Price 2000). As there is a further workpackage concerned
with extending this to model failures in the software or network parts of these sys-
tems (Workpackage 4 in (Snooke and Price 2000)), this report will also discuss the
AutoSteve data bus support in terms of how well it meets these requirements and
what further extensions might be required for modelling of software or network
failures.

Evaluation was started using version 2.6, but the tests carried out have since
been redone, and work continued, using the recently installed version 3.1.

1.1 Scope of this report

This report is concerned specifically with the modelling of systems that incorpo-
rate data bus components, allowing separate components to communicate digitally.
There is no discussion of the modelling of individual components that themselves
use software. This is inevitable given the document’s focus on support for modelling
data buses, and follows from the project’s early focus on such networks, especially
CANbus. As a result of this focus, this report is concerned with how well the data
bus support facilities added to AutoSteve support modelling of CAN (and similar
protocols). In practice this is quite an appropriate approach to take as CAN is a
CSMA/CD protocol, so message collisions are possible, and message latency is not
deterministic. It is therefore likely that if CAN is supported, the same bus sup-
port can be used to model time-triggered networks, as these difficulties in modelling
should be avoided.

1



In view of the report’s discussion of AutoSteve, familiarity with the software
is assumed. Familiarity with CAN and other network protocols referred to is also
assumed. CAN is described in (Bell 2001b) and other protocols used in the automo-
tive industry are described in (Bell 2001c). These protocols are compared in (Bell
2001a).

1.2 Structure of the report

The main purpose of this report is to comment on the findings of work on evaluating
the bus support for modelling CAN. This has been arranged in one section, Section 2,
subdivided into subsections for each area for discussion. As it seems worth adding
material on what might be needed to allow failures in the network to be modelled,
this has been added as a further section, Section 3, following the evaluation material.

1.3 Background

As stated in the introduction above, this report in concerned with how well the data
bus support added to AutoSteve from version 2.6 can be used to model automotive
electrical systems that make use of a data bus, specifically one using the CANbus
protocol.

Because we have found few useful case studies, the work is largely based around
systems devised here. These have been kept simple for a variety of reasons. These
include:-

• The desire to confine modelling problems to the network components. I wanted
to avoid delays and distractions resulting from attempting to solve modelling
problems not arising from the network itself.

• Difficulties arising from modelling systems whose correct functionality depends
on complex behaviour, specifically cases where the function depends on tempo-
ral relationships between system outputs. These problems have been discussed
in (Bell 2003b).

2 Evaluation of existing bus support

For the reasons outlined in Section 1.3, much of the evaluation work was done using
simple systems devised especially for the work. One such system that was used for
much of the work is a version of the old simple lighting circuit, modified to use a
data bus, illustrated in figure 1. While the system is not an accurate rendition of
any actual system, it does have features taken from a Jaguar system. Apart from
the obvious one (the use of a network), the most important feature taken from the
Jaguar circuit is the addition of the “autosensor” that is assumed to switch on the
dipped headlamps once the light falls below some preset threshold. In the case of
this model it is, of course, merely another switch, with the light threshold set as an
input property. It is valuable for the current work, as it is possible to allow both

2



CAN

SPL?

SPL?

SPL?

SPL?

SPL?

SPL?SPL?

SPL?

SPL?

SPL?

SPL?

SPL?

SPL?

SPL?

SPL?

+V L_H_MAIN R_H_MAIN

R_H_DIPPEDL_H_DIPPED

L_H_SIDE R_H_SIDE

MAIN_BEAM_RELAY

DIPPED_BEAM_RELAY

SIDELIGHT_RELAY

D

M

P S
selector

dip_toggle

LAMP_SWITCH

GNDPWR

SIG

AUTOSENSOR

D

GND

M

PWR

RTN

S

SIG

SWITCH_ECU

PWR GND

SIG

S D M

CONTROL_ECU

Figure 1: A simple lighting circuit using CAN

the autosensor and the switch to send messages at the same step in the simulation,
to generate collisions between messages from the ECU and the autosensor. It will
be appreciated that this a poor model of a sensor’s likely behaviour. It is likely
that a sensor will send a reading periodically and it will be left to the lighting
control ECU (in this case) to interpret the reading. The way the system has been
modelled has placed the interpretation in the hands of the user, expressed using the
sensor component. The question of the different transmission types (such as periodic
transmission) is considered in Section 2.5 below.

The tests have been done using the simulator, rather than running FMEAs. This
was because it was felt necessary to examine the behaviour of the system in more
detail than seemed convenient from an FMEA — it was felt that the functional
model’s interpretation of the behaviour would not be helpful, and it was desired to
examine the state of the system after individual input events. I appreciate that this
can be done from an FMEA, but it seemed simpler to use the simulation tool.

The data bus support is intended to allow different protocols to be modelled.
These tests are concerned with CAN, so I have not looked into facilities for point
to point communication, though this is supported. In the systems modelled, this
is hardly relevant, but it should be possible to have a component ignore messages
unless the id is appropriate (i.e. it can reject messages according to the message id).
This would approximate to modelling so-called “full CAN”.

3



2.1 Identifying messages

It was noted above that it should be possible to identify messages by their id and
reject those that are irrelevant to the receiving component. If the “message” data
type is used, this can indeed be done. No attempt has been made to model rejected
messages but in the test circuit the control ECU needs to distinguish between the
two senders, as the same value has a different meaning in the two messages. This it
does correctly, so there is no reason to suppose that a component cannot be made to
reject messages according to the id. Indeed, this already happens in the test circuit
as messages from the autosensor are ignored if the lights have been turned on by
the driver.

This would allow the possibility of modelling the CAN terminal as a separate
component form its associated ECU and mean that only the relevant messages were
passed to the ECU. This will presumably only be worth doing if the CAN terminal
and ECU are electrically distinct (so they have different connections to the power
supply, say) or if enough of the network is being modelled that irrelevant messages are
likely. Another advantage might be to simplify modelling of complex behaviours, by
separating them into distinct components. This can, perhaps better be handled by
using separate concurrency groups for the CAN behaviour ad the ECU behaviour.
This has been tried and seems to work fairly well, but might not be a perfectly
accurate model of the actual behaviour. The possibility would exist, perhaps, of
having a configurable CAN terminal component that merely needs configuring with
the ids of the messages it should pass on to its ECU on receipt.

2.2 Generating a collision

One test felt necessary was to ensure that the collision modelling provided worked.
When using the AutoSteve bus support, if two messages are sent simultaneously,
they will collide, unless they have priorities set, in which case the higher priority
message will be transmitted.

One interesting problem that was identified here was that the collision depends
on both messages being generated in the same way. Using the simple lighting circuit
in figure 1, attempting to generate a message collision when having the autosensor
and switch ECU sending messages at the same step of simulation failed consistently.
Instead each message was written to the bus correctly, but only the first one was
read. This meant that the simulation finished with the dipped headlights on when
it should have finished with the sidelights on.

It was found that if the expected collisions were to be generated, it was necessary
to eliminate the electrical simulation that was necessary to drive the change of
state in the switch ECU. This was done by combining it with the switch itself, as
shown in figure 2. This is not an appropriate solution because the wires connecting
the switch and the ECU are also lost and so will their failures be in FMEA. One
possible work around is to model the switch and ECU as separate components but
have them communicate by passing messages rather than by using an intermediate

4



CAN

SPL?

SPL?

SPL?

SPL?

SPL?

SPL?

SPL?

SPL?

SPL?

SPL?

SPL?

SPL?

SPL?

SPL?SPL?

+V

MAIN_RELAY

DIP_RELAY

SIDE_RELAY

PWR GND

SIG

S D M

CTRL_ECU

GNDPWR

SIG

AUTOSENSOR

L_H_MAIN R_H_MAIN

R_H_DIPL_H_DIP

L_H_SIDE R_H_SIDE

GND

PWR

SIG

dip switch

rotary selector

off

side

head

SWITCH

Figure 2: The lighting circuit, without electrical connections between the switch and
ECU

electrical simulation. This means that the connections between the components are
reintroduced, but their failures will need to be modelled specifically, rather than
relying on the domain level rules. It might be hoped that avoiding the intermediate
electrical simulation would solve the timing problems associated with the original
version of the circuit. This was actually found not to work, and this version of the
circuit behaved in exactly the same way as the original version as far as collisions
were concerned.

It seems that the cause of the problem with the original circuit is that the state
simulation and electrical simulation do not share a common notion of time, so get
“out of step” with each other. This seems to be a problem whenever the interaction
between individual components in a system is shared between behavioural level
(state chart) simulation and domain simulation. Is it feasible to introduce a common
notion of time for both simulators? CIRQ, of course, has no notion of time, the
electrical events that might change the state of the circuit are implicitly assumed
to be instantaneous and not specifically specified as such, which would allow some
coordination between the circuit and state simulators.

5



2.3 Message priorities

In CAN, if two messages collide, the higher priority message is transmitted and
the lower priority message transmitter will yield to it. The AutoSteve bus support
allows setting of priorities to model this. In CAN, the message’s priority is given
by its message id, which must be unique. The data bus support includes a message
data type having an id and the content. The priority could be set to the message’s
id (it has to be done specifically). In version 2.6, if the message id was used as its
priority this would have resulted in incorrect behaviour as in CAN the lower the
message id the higher the priority and in AutoSteve, the higher numbers had higher
priority. This has been changed in version 3.1, however, so the message id can now
be used.

Naturally, as there was no collision, setting message priorities with the circuit
in figure 1 made no difference to its behaviour. Setting the priorities for the circuit
in figure 2 means that no collision is detected, and the higher priority message is
transmitted.

In AutoSteve, the default behaviour if two messages collide is for the lower
priority one simply to be lost, while in CAN the message will be re-transmitted once
the other message has cleared the network. (It might, of course, lose arbitration
again!). Some time has been spent attempting to model this behaviour with only
limited success. To make the outputs more distinct, a more elaborate version of the
circuit was used, shown in figure 3. The aim in simulating this circuit was to try
to get the behavioural models of the autosensor and the brake pedal to retransmit
when the message on the bus is not the one sent by that node. This has been found
to be possible, but has not yet resulted in the system as a whole working as expected.
At present it is unclear whether the problems are due to my incorrect use of the
facilities or whether they are genuine problems. I shall briefly list the findings found
here, a more detailed description can be provided, but might be better done in a
demonstration rather than in writing.

One problem is that it was impossible to use concurrency groups for the two
behaviours of the rear lamp control ECU, for the tail lamps and the brake lamps.
This was because they need both to read the same message from the CAN — even
though one will ignore it, it must read each message if only so that its irrelevance
can be established. It was found necessary to model that component’s behaviour
more in terms of receiving and waiting for messages from the bus rather than its
internal state (which lamps it should be driving). The best approach to modelling a
component that receives messages seems to be to model the receiving behaviour in
one concurrency group and its ECU behaviour(s) in others. The message signal is
used to set values of internal variables and these in turn used to trigger transitions
in the ECU behaviours. This has been tried and appears to work.

When attempting to get a transmitter to detect that its message has not been
received, the major problem appears to be that a component does not seem to
receive its own messages. Detecting that a message has lost arbitration by reading
the id of the message on the bus works when the component does lose arbitration

6



SPL?SPL?SPL?

CAN

SPL?

SPL?

SPL?

SPL?

SPL?

SPL?SPL?

SPL?

SPL?

SPL?

SPL?

SPL?

SPL?SPL?SPL?

SPL?SPL?SPL?

SPL?SPL?

SPL?

SPL?SPL?

SPL?
+V

L_H_MAIN R_H_MAIN

R_H_DIPL_H_DIP

L_H_SIDE R_H_SIDE

DIP_RELAY MAIN_RELAY

L_H_TAIL

R_H_BRAKEL_H_BRAKE

R_H_TAIL

TAIL_RELAY

GND

PWR

SIG

dip switch

rotary selector

off

side

head

LAMP_SWITCH

BRAKE_RELAY

PWR GND

SIG

S D M

CTRL_ECU

SIDE_RELAY

PWR

GND

SIG

BRAKE_PEDAL GNDPWR

SIG

SENSOR

B

GND

PWRSIG

T

REAR_CTRL_ECU

Figure 3: Lighting circuit, adding tail lamps and brake lights

(there is another message on the bus) but the same test cannot be used when there
is no collision. This means that the component behaviour freezes in an unexpected
state. I have tried using the presence of data on the bus as the test for a collision
and this seems to work provided there are only two competing nodes and there is a
delay (milliseconds) before testing that there is no data available on the bus. This
has not worked in all cases, and seems like a rather hacked work around. It is not
clear how this affects modelling of components that win arbitration, as the highest
priority component never needs to retransmit this behaviour has not been added
that component, as to save time the existing light switch was used and left with
highest priority.

2.4 Message latency

The data bus support allows the user to set the message latency in building the
models. As in CAN this is undetermined (it depends on the frequency of collisions
and how arbitration treats the specific message) it is unclear how useful this is for
CAN and other CSMA/CD protocols.

It was suggested that its use might help with the collision problem discussed

7



in Section 2.2, but it was found not, the problem being caused by the intermediate
electrical simulation, as noted there. However, setting the message latency to 100mS
for both messages was found to affect the behaviour of the system in figure 1. Instead
of only the first message (that from the autosensor)being read, both were read and
acted on in sequence, so the simulation ended with the sidelights on, the dipped
headlights having been on for several earlier steps in the simulation. This is broadly
correct for the situation where the autosensor message happens to get transmitted
first but as both messages were written before either was read, there should have
been a collision.

It is perhaps worth noting that if two input events occur simultaneously, there
are three possible results. Either message might be transmitted first, or they might
collide (which with CAN will have the same effect as the higher priority message be-
ing transmitted first). This raises the question of whether each of these possibilities
should be simulated.

2.5 Message transmission types

According to (Ludwig and Palm 2002), there are four transmission types used for
CAN messages. These are:-

Fixed periodic Message is sent periodically, whatever the values are.

Event Message is sent if at least one signal has changed since last transmission
of the message and the specified minimum delay (since sending the previous
message) has passed. If the minimum delay has not passed, transmission will
wait until it has.

Fixed periodic and event Message will be sent periodically (as above) and also
sent when at least one signal has changed, after a minimum delay.

Enabled periodic Message is sent periodically provided at least one of the signals
differs from its default value. When all signals return to their default values,
the message is sent one final time.

It is worth noting that a typical CAN message might include several data. Each
individual datum is what are meant by a “signal”. For example in the C214 messages,
there is a message sent by the transmission control unit that includes the readings
for the transmission torque loss, the turbine speed, the drive shaft speed and the
transmission ratio, each of these is a “signal”. So one message typically includes
several signals.

It will be appreciated that modelling components using state charts is best suited
to modelling messages of the “event” transmission type. It was noted above (in the
introduction to this section) that this has been used for modelling the output of the
autosensor component and that this is unlikely to be a correct model of a sensor’s
behaviour. The question is whether it can be modelled more accurately and whether
this is worth modelling.

8



It would, of course, be perfectly feasible to have a state chart sending a message
periodically, by simply adding an ongoing cycle of “fire after” events that send the
message. This will result in the simulation being unable to run to a conclusion as
the cycle is endless and is arguably rather meaningless if the simulation is being run
on an individual system. There are two main arguments behind that statement.
The first is that the modelling of network messages in real time (or a scale model
thereof) is irrelevant since the rest of the simulation is not run with any consistent
notion of time. In the case of the autosensor in the example circuit, the sensor will
be sending out a periodic stream of messages until the whole system is closed down.
Eventually, one of these messages will include a value that crosses the threshold.
This is incapable of being correctly modelled if the system runs to a steady state
and then waits for the next change of input. If the message is sent at a fixed period,
then if the simulation runs to a steady state and “waits” for the next input event,
how does the simulation interrupt the series of transmissions, and add the likely
delay in sending the message? If this is done, does it need to test for all possible
delays, in other words to assume that it resumes its simulation at any point in the
periodic interval between messages? The other argument is that the main advantage
of modelling periodic message passing is to use that as a way of modelling the load
on the network as a whole. This is obviously not going to be interesting at a system
level, unless all nodes on the network are included in the system concerned.

One related difficulty with the example system is that the sensor “knows” when
the light level changes relative to the threshold. Realistically, of course, the sensor
should send a periodic numerical value and leave it to the control ECU(s) to decide
its relation to the threshold value and so whether to change the state of the lights.

Having the autosensor in the circuit in figure 1 send messages periodically has
been tried, but it appears that the simulation does fail to reach a conclusion. This is
to be expected, as a steady state is never reached, of course. It would be necessary
to have the simulator recognise that a cycle had been reached and stopping on doing
so. This is necessary for correct modelling of CAN based sensor data messages, as
these seem generally to be transmitted on a periodic basis.

The idea that modelling periodic messages needs a consistent notion of time to
be useful does seem to have some common ground with the problem identified in
Section 2.2. There is also some common ground with the idea that some notion
of timing might be necessary for modelling input events whose effects depend on
their temporal relationship to other input events, such as the quick unbuckling of
the driver’s belt in the “belt minder” system being used to temporarily disengage
the system.

There seems no particular difficulty in modelling either the “fixed periodic and
event” or the “enabled periodic” transmission types using state charts other than
the problems outlined above for modelling periodic messages in general.

It is perhaps worth noting briefly that there are two distinct classes of sensor
reading. One is those that are unaffected by the system state, as in the case of the
lighting circuit example, where the fact that the headlights have been turned on
will not affect the sensor (or they will just get turned off again!). The other case is

9



where the sensor does complete a feedback loop, such as a temperature sensor in a
space heating system. In this case, of course, the expected behaviour of the system
is that the state will eventually change with no further user input. For example, the
heater will switch off once the desired temperature has been reached. This has been
discussed in (Bell 2002) and is not considered further here, it having been decided
that this line of investigation is beyond the scope of the project.

It is suggested that for simulation at a subsystem level, for FMEA, it is likely to
be useful to model messages as being event triggered, in other words to fail to model
those that result in no change, at least in cases where feedback is not a factor. This
is so if we can model the effects of a message delay in some other way (discussed
below) and if we suppose that the possible delay in the system learning of a change
of value that results from the normal operation of a periodic message is acceptable.
This is a valid supposition for FMEA where the aim is to find the effects of failures,
but it would not be a safe assumption for design verification.

2.6 Conclusions

It seems worth briefly summarising the findings of this work. There seem to be
areas where the current AutoSteve bus support does not seem quite sufficient for
correct modelling of systems that make use of CAN, though it should be noted that
some, at least, of these problem areas might be because I have not found the best
approach to modelling such systems. These areas will be noted in these concluding
notes. The main findings and problem areas seem to be:-

• The use of the message data type seems to work well, and its id can be used
both to sort out relevant and irrelevant messages (so allowing “full CAN”
behaviour to be modelled, if the CAN terminal is modelled as a separate
component) and also to set the priority of messages in handling collisions. It
is worth pointing out that I have not tried modelling complex CAN messages
that include several data (signals) but I see no reason to suppose that this
should not work, using an array of integers.

• This does lead onto the difficulty experienced modelling CAN’s collision han-
dling behaviour. It is fair to summarise this by noting that a good deal of
time has been spent trying to model the the retransmission of messages with
only limited success. However, it it does seem possible that my result could
be improved upon.

• The fact that the simulator runs to a steady state and that this means that
periodic (and other) message types cannot be adequately modelled does seem
problematic, partly because of the difficulty noted earlier, that it becomes
desirable to associate behaviour with the wrong component (the sensor only
sending a message once the threshold has been crossed) and also if network
loading was to be modelled, as this will depend on the modelling of periodic
messages. To model this correctly, the simulator needs to be able to recog-
nise that the behaviour is cyclical and stop the simulation gracefully. While

10



this seems quite feasible, it is appreciated that it is not likely to be a trivial
alteration.

• The modelling of collisions raises one or two questions, though these are partly
sidestepped by the use of message priorities. One is the idea that two simul-
taneous input events need not result in a collision (either one might result in
its message being sent first or they might both result in changes to different
signals in the same message). Should all possibilities be modelled here? Are
there cases where the ordering might affect the final result? Obviously, if the
two inputs make different changes to the same message, this implies a com-
ponent whose task it is to construct the message and it should be possible to
model this with the rider that the message cannot be sent periodically. The
other difficulty is the loss of consistent timing when there is an intermediate
electrical simulation. The use of priorities does not help here and there seems
to be no answer simpler than the idea that the individual simulators need a
common notion of time, so they models stay synchronised. As an aside here,
it is worth noting that some sort of global time might also allow the timing of
input events to be related, as was found necessary in modelling the temporary
deactivation of the belt minder system.

In conclusion, it does appear that the bus support can be used for simple models of
simple CAN system, but the problems noted herein seem to prevent correct mod-
elling of more complex (realistic?) cases. There is room for more work in evaluating
some of these areas (particularly modelling message retransmission) and it might be
suggested that the problems with global time and simulation to a steady state lead
to more research questions that should be followed up.

3 Modelling network failures

As suggested in the introduction, it seems worth adding some discussion on mod-
elling of network failures to this report. This material is more speculative in nature,
at present no attempt has been made to to model network failures, though it seems
likely that some, at least, could be modelled.

In AutoSteve, the data bus is represented using a network (or wires?). A network
appears to have no failure modes associated with it, but they could, of course, be
added. If wires can be and are used, the failure modes will be inappropriate for
modelling network failures, being intended for electrical ones.

In (Thomas 2001) there are six generic network failures listed. These are:-

• Unable to transmit data.

• Unable to receive data.

• Data transmitted late.

• Data received late.

11



• “Bad” data transmitted.

• “Bad” data received.

These can be paired off, in that the effect of data being “lost” or late or corrupt will
be similar whether the cause is failure in transmission or reception. As the causes
are different, the “occurrence” value will differ. It could be argued that there are
actually nine failures, in threes, where the failure is caused by the sending node, the
network itself or the receiver. This idea is suggested by the fact that it is unclear
whether a network failure results in transmission or reception failing in (Thomas
2001). In practice, the probability of data being corrupted by the network and that
corruption being undetected are vanishingly low, but this does not stop wrong data
(from a faulty sensor, perhaps) being accurately transmitted, of course. A detected
corruption will result in delay to the message, as it will need to be sent again.

There does not seem to be any great difficulty in modelling non transmission or
non reception of messages, especially as the faults that lead to this are likely to be
persistent. If a node is to fail to transmit a given message, it is likely that it has
stopped transmitting altogether. Similarly, if the CAN stops transmitting, it will
cease to transmit any message or if a node stops receiving any message it will stop
receiving all messages.

One difficulty with modelling late arrival of a message is that this is not a con-
sistent problem — it is not realistic to model the CAN as delivering all messages
late. It is likely that what is wanted in system level FMEA is to establish the
consequences of any individual message being delayed. This is, of course, rather
different from attaching the failure to the component itself, but presumably it can
be attached to the component, the message being regarded as an “instance” of the
network’s operation, with that failure attached to the specific message.

Some complication attaches here, of course. If a message is delayed because
the CAN is overloaded, then all messages (at least all messages of lower priority)
will also be affected while if it is because of some fault in the sender, then no other
message will be affected. This raises the possibility of the ordering of messages being
changed. Do both possibilities need modelling?

There are also two possible consequences of delay to a message. It might actually
affect the behaviour (which there should be no conceptual difficulty in modelling).
One obvious case here is the possibility that ordering of messages is changed, though
this is, of course, next to impossible if a network (as opposed to transmitting node)
failure means a lower priority message being transmitted before rather than after
a higher priority one. The other case is where the effect is simply that a system
function is achieved late. The late achievement of functions has been considered in
(Joseph 2003) and (Bell 2003a) and is not considered further here. It is also the
case that it might be necessary to simulate systems whose functionality depends on
relatively complex behaviour (the belt minder system is an example even though it
does not use a data bus) and this might lead to further problems with the existing
functional modelling language. These problems seem more apparent for tasks other
than FMEA, where is is more need to link the system functions output with the

12



system input state, such as in SCA or design verification. This is discussed in (Bell
2003b).

The idea of attaching the failure to the message rather than the network seems a
possible approach to modelling corrupt data. One possible difficulty here is that cor-
ruption might conceivably result in a message that can normally be ignored having
an effect. Should we attempt to model the case where the message id is corrupted,
so the receiver acts upon the wrong message? I suggest this is so unlikely that it
can be ignored, especially as modelling all possible messages (so their content can
be used) seems unduly cumbersome. This leads on to another difficulty of modelling
corrupt messages — the effect is likely to depend on the nature of the corruption,
to which part of the message (id or signal) the actual value transmitted. As these
are typically numerical, there is a range of wrong values that might be transmitted.
Does each possible corrupt value need modelling? It is suggested that this difficulty,
combined with the improbability of corrupt transmission being undetected means
that this failure need not be modelled (except in terms of delay to the message). In
CAN if a node persists in sending corrupt messages it will eventually be forced to
stop transmitting altogether. This will, of course, be modelled by non-transmission
of the appropriate messages. As in a given simulation, all that is required is for those
messages to be modelled, this can safely be considered a case of non transmission of
data.

3.1 Summary

It seems worth closing with a summary of questions or areas that might need con-
sideration.

• Changes necessary to model late achievement of function. An approach to this
has been suggested in (Joseph 2003), and a similar approach in (Bell 2003c).

• Method of modelling time appropriate for modelling message delays. The order
of magnitude time is arguably of limited use here as the intervals between the
orders of magnitude are so large.

• Possibility of attaching to failure to messages rather than network, so individ-
ual messages can be modelled as being late.

4 Conclusion

This report has described findings of attempting to model simple CAN based systems
using the AutoSteve bus support and has introduced areas that need consideration
if network failures are to be modelled. It is accepted that some of the problems iden-
tified might be solved by more knowledgeable application of the facilities provided,
but the investigation carried out so far has shown areas where further research might
be valuable, and the report also suggests ways in which network failures might be
modelled. These include:-

13



• The need for global time, so different parts of the simulation stay synchronised
correctly.

• The need for the simulator to recognise that it has reached a cyclical behaviour
and so can stop.

• The possible need to capture late achievement of system functions, resulting
from late reception of messages.

• The need to attach failures to individual messages, so as to capture the inter-
mittent nature of that failure mode, the need to establish the consequences
of a specific message being delayed. There is perhaps some interest in the
relationship between this area and the modelling of periodic messages.

References

Bell, J. (2001a). Comparison of protocols used in the automotive industry.
SoftFMEA document ref. SD/BCG/PR/GEN/03.

Bell, J. (2001b). Notes on CANbus. SoftFMEA document ref.
SD/BCG/PR/CAN/01.

Bell, J. (2001c). Other automotive industry protocols. SoftFMEA document ref.
SD/BCG/PR/GEN/01.

Bell, J. (2002). The heater circuit - matters arising. SoftFMEA internal report.

Bell, J. (2003a). Comments on “temporal functions”. SoftFMEA memorandum.

Bell, J. (2003b). Function and complex behaviour. SoftFMEA document ref.
SD/TR/FR/03.

Bell, J. (2003c). Temporal aspects of functional modelling for design analysis.
SoftFMEA internal report.

Joseph, R. (2003). Temporal functions. FirstEarth report, draft version 0.2.

Ludwig, C. and D. Palm (2002). 2003 C214 CAN RO5 CAN infosheet. Ford
confidential memo.

Snooke, N. A. and C. J. Price (2000). SoftFMEA — automated safety analy-
sis of automotive embedded systems. Proposal submitted to EPSRC Critical
Systems Programme.

Thomas, T. J. (2001). Generic Network FMEA. Ford Motor Company.

14


