Proposed approaches to network simulation

Author:

Jon Bell

Date:

11/2/02

Document ref.
SD/TR/03

1. Introduction

This document sets out two approaches to modelling network components for simulation in FMEA. It is suggested that these approaches complement each other, so the proposal is that each method will be implemented.

The two approaches are: -

· Using the existing AutoSteve StateBuilder tool to model network interactions

· Creating a “model framework” that should allow different simulation tools to be used for different parts of a hybrid system. In addition to this flexibility, this framework is intended to provide a location for modelling the system’s environment, allowing more sophisticated modelling of time varying systems.

Sections describing each proposal follow. These sections will be followed by a conclusion incorporating a discussion of how these approaches fit into the SoftFMEA workpackages, and setting out a possible work plan based on these two approaches.

Both these approaches enable modelling the network (or software) components behaviourally, while modelling the electrical system itself structurally (using AQQA).

It is not proposed to discuss the arguments for different approaches in great depth here. There is some discussion of this in the companion report, Languages for simulation of network and software components.

2. Using StateBuilder

It has been noted that AutoSteve already incorporates some behavioural modelling by using state charts to describe the behaviour of components. It is felt that this existing tool could be used to model network interaction, albeit at a fairly high level of abstraction, based on schematics similar to the Jaguar example circuits.

The lighting circuit discussed in Systems with telematic components has been simulated using qualitative AQQA, with promising results. FMEAs have been generated for the circuit as shown below, and for a circuit with no CAN component, but otherwise identical. When all faults of components common to both circuits are included, the FMEAs are identical. This suggests that using a state transition diagram to model network interaction is capable of producing models that simulate electrical failures correctly.

2.1. Description of the method

The figure below shows the simple lighting circuit from Systems with telematic components [2] with the CAN components shown in the manner of the SCP connections in the Jaguar example circuits. AutoSteve can simulate this circuit if we combine the two ECUs into one component, using the StateBuilder “send” facility to model message passing over the network. This facility actually sends events, so is an imperfect model of network message passing as messages typically send data. Clearly, the data sent from a sensor, for example, will not necessarily trigger an event. Modelling these messages as events implies that the sensor knows what the effect of the message will be, which it will not. It may be the case that a single sensor’s data causes different events in different parts of a system, which suggests that using events may be insufficient or, at best, cumbersome. Evaluation of the system should clarify this. It should be feasible to extend the State Builder language to support data passing, if it is found to be beneficial.

[image: image1.png]NT_LAMPS.1(5CH) A4=11
efaultAction M1 _

w Edit Change Add Select Navigate Info Init Utlls

X=79 Y=788 DX=-984 DY=298

The two ECUs can be combined to create a sort of composite component with one state machine like that shown in the figure below. Each component is modelled as the highest level state in a concurrency group, while the whole state machine represents the network side of the system. This model simplifies the network side as much as possible (and is similar to the representations of the network in the Jaguar example circuits). It remains to be seen how feasible it is to model the network in greater detail.

[image: image2.png]can_system

Switch_side_on
switch_ECu pwitch_start Tiro if SW ARG = ACTIVE and
S SiDEC ACTIVE anet

bswitch_sides
switch_off SWMAIN INACTIVE;
p A R
switch famps off
fire if SW ARC = ACTIVE and
S SinE L TaCT Vet
N SWMAIN = INACTI V!
Wahpa.orr 25361
witch heads on witch heads off
IISW AHE: AL‘TIl/Eand if SW ARC = ACTIVE and
L o G Sioe LAcT e
) A ant
R A R
AR ST p A R
Switch main_ beam
fire if SW ARC = ACTIVE and
Switch_main I G D A Ve and ™ switch_dipped
SWAAIN = ACTIVE;
i hears <3 s
Switch dipped_heam
fire if SW ARC = ACTIVE and
S Sine D facT Ve and
SWMAIN < TRACTIVE:
e hoath 5 Self:
control_ECU tart
control_off control_side
e o > if CONT_ARC = ACTIVE then
CONT_SIDE.r:- ZERO;
CONT_SIDE.r:= INFINITE; % TampS oTT CONT_DIPPED.r:= INFINITI
CONT_DIPPED.r:= INFINIT CONT_MAIN.
CONT MAIN.r:= INFINITE: endif:
e control_dipped
S N wean if CONT_ARC = ACTIVE then
if CONT_ARC - ACTIVE then st S S
CONT_SIDE.r:- ZERO; CONT DIPPED.r:- ZERO;
CONT DIPPED.r:- INFINITE; G

> CONT_MaIN.r:
CONT_MAIN.r:= ZERO; ppEd_bea T

INFINITE;

The proposal is to automate the construction of this composite state chart, building it from the component state charts for each ECU. The user would draw the switch_ecu and control_ecu state charts in the usual way, using the component builder. The program will recognise that the two components are connected by a network so will create the composite state chart, placing the components’ state charts into concurrency groups, one per component. The user will need to be asked to map the messages between these charts. State charts describing failure mode behaviour could readily be incorporated in to the composite state chart, allowing failures of the components to be modelled.

There seems to be no reason why the method should not allow more components to be included, complicating the resulting state chart, but as this is generated automatically, the complexity of this chart should not be apparent to the user. It might be necessary to allow different component state charts to be substituted to allow faulty behaviour to be modelled, though this might not be necessary if only such faults as pins becoming disconnected are simulated.

One tempting refinement might be to add a “send message” action that allows sending of data and identifies the source, rather than the destination. This would then be a simple but correct model of a CAN message.

This example is simple in that there is a direct one to one mapping between states in each group. More work is needed to establish how this will work when this is not the case.

2.2. Advantages

The most important advantage of this method is its simplicity and therefore its speed of implementation. It is hoped that we can have an implementation ready for evaluation ready early enough that users evaluations can be used both possibly to improve this facility and more importantly to identify areas the final method should address. This simplicity also has the advantage of ease of use, as all modelling takes place within AutoSteve it should be familiar to users, and there is no need to build models in some other language (SDL, say) to allow systems with telematic components to be run. This simplicity should lead to implementation being done quickly, allowing evaluation of this tool to be carried out, informing development of the more sophisticated “model framework” approach.

The suggested refinement (identifying a sent message by source rather than destination) looks to be at least potentially a neater way of creating a simple model of a CAN (or other protocol) message than that provided by SDL, say. It also should mean that the broadcast nature of all such network messages is modelled. All protocols investigated identify messages by source, not destination.

If CAN is added as a middle component in the network state machine, then simple CAN faults (such as messages not being sent or received) could be readily modelled. This allows the proposed tool to model many of the failures included in Generic Network FMEA [1].

Using the existing state machine language avoids the possible need for two (partial) behavioural models for a network component, one to interact with the electrical simulation, and one to interact with the network simulator.

2.3. Limitations

Although this tool can model non-transmission of a CAN message, it cannot readily be used to model its late transmission. As AutoSteve functions are linked with output, some sort of mapping between input and output is needed for satisfactory modelling of late fulfilling of functions. It might be plausible to add the idea of lateness to the functional model, with a failure whose consequence is along the lines of “Headlamps slow to dip – driver of oncoming vehicle briefly dazzled”, together with a severity. This would mean that most of the failures in Generic Network FMEA [1] are modelled, if crudely. This limitation of the method arises partly from the modelling of system failures.

This tool would not model the protocol itself. Probably the best approach to that will be to incorporate a CANoe model of the network into the system model.

2.4. Future work

More modelling of simple systems should be done to explore the limitations of this method. It is proposed to attempt to model the heating system from Systems with telematic components. It is also proposed to attempt to generate more complex models of the network side, to see whether network faults can be better simulated. This might reveal whether any extensions to the State Builder language are needed.

Implementation of this method can then follow, and is not expected to present great difficulties. Indeed that is an important advantage of this approach.

3. Creating a “Model Framework”

Creating a model framework is felt to be complementary to the StateBuilder approach discussed above. This approach should be sufficiently flexible to allow simulations at various levels of detail to be run, either to concentrate on different areas of failure or at different stages of the design lifecycle. This addresses the limitations of the State Builder approach.

3.1. Description

This approach involves generating a framework representing the system, into which models of the various subsystems will be “plugged” for running a simulation. The framework will both specify the routes interactions between the models will take, and will also specify the nature of these interactions (network messages, electrical signals etc). The framework can be thought of setting out a “contract” that the subsidiary model should fulfil. It will do this by specifying the expected behaviour of the subsidiary model. This could either be explicitly specified or could perhaps be derived from the description of the correctly functioning subsystem. This has the advantage that any model that can fulfil the contract can readily be substituted. The obvious example might be swapping a Saber simulation of an electrical subsystem for an AutoSteve one. The framework will also have a role in specifying the system’s functions and also in describing system behaviour that AutoSteve itself cannot deal with. It also provides a way of specifying interactions between the system and its environment. The diagram below, of a model framework for the heater system in Section 6.3 of Systems with telematic components illustrates this.

[image: image3.png],‘| heater_circut <|| heater_CAN_terminal

varisbles: temp, desrired_temp
function: i switch posian
enviranmental behaviour: aver

i anel temp < desieTemp, heater o be ON
time, f heater is ON, then temp ncreases; else if swich posiion

i ant heater ot ON, temp decreases

Model framework for heater system

The framework provides seven “sockets” into which models of distinct subsystems can be plugged. Routes of communication between the sockets are specified (indicated by arrows in the figure) and the nature of these communications will be specified. Note that the arrows do not themselves model real parts of a system (such as network media), they merely show which socket connects with which, and specify how. The framework also provides a place to specify items that are beyond the scope of AutoSteve, such as necessary variables, and other behaviours, as shown here.

[image: image4.png]Thester_CAN terminal,
inSDL

heater_circut, in Saber

CaNioe madel of CANbUS

Switch_CaN ferminal,
insDL

Sensor_CAN_terminal,
insoL

‘switch_circut, in Autosteve sensor_cireut, in Autosteve

varisbles: temp, desrired_temp
functon: I switch postin = off and temp < desiredTemp, heater 1o be ON
environmental behaviour: over ime, f heater s ON, then temp increases; else f swich postion

i ant heater ot ON, temp decreases

Model framevwork for heater system
with models “plugged in"

The idea is that different tools might be used for the different plug in models, as shown in this rather exaggerated example. There are various other ways this might work. The most obvious alternative might be an AutoSteve schematic for the whole system, except the CANbus itself, with six “pins” so it fits all the sockets save the CAN one. This usage means all electrical connections are modelled. A further option might be to manage the interaction between a circuit’s ECU and its CAN terminal using composite state charts as described in section 2, and having these models communicate through a model of CANbus, so the framework only needs four sockets.

It is hoped that many component/subsystem models could be made reusable. CAN terminals are the obvious example. A generic terminal could be inserted, and what messages it will transmit and what message sources it will pass to its associated ECU can be specified.

There is clearly more work to be done in designing this framework. For example, the desired temperature variable should be local to the system (being set at the switch and held by the ECU) but the environment needs to be aware of its existence for behaviour and functional specification. This introduces the problems associated with global variables – some way of restricting its visibility in the system might be needed.

3.2. Advantages

This approach should be flexible, allowing mixing of different models. This allows the mixing of models of components modelled at different levels of abstraction, such as electrical models mixed with behavioural models of software components. It should also support the use of different models at different stages in the design lifecycle, for example substituting a Saber model for the qualitative AQQA electrical circuit model.

The framework supports model reuse, at least for common components or subsystems.

It provides a framework for capturing more elaborate functionality than AQQA is capable of, such as the relationship between the desired and actual temperatures, and the effect of the heater running on the whole system and its environment.

3.3. Limitations

The main disadvantage of this idea seems to be its complexity. It will also be necessary to provide bridges between the modelling tools used. These could be thought of as lining the sockets, providing an interface between the tool and the framework. It also remains to be seen how well this added complexity can be hidden from the user. Clearly if the method is to enable modelling of more complex functionality then this complexity needs to be accepted by the user.

It remains to be seen how practical some of the features of this idea are. The main causes for concern are how practical is the idea of associating variables and behaviours with the framework. There does not seem to be any problem, but difficulties may emerge.

3.4. Summary and future work

This idea is in its infancy, and it is assumed that if it is to be adopted, implementation will be much of the project work. There is scope for further investigation into whether such complexity is needed, and how useful the extensions to the functional and behavioural modelling will be. It is hoped that evaluation of the simple State Builder based tool will help here. Some thought will also have to be given to how well this approach suits other tasks, such as SCA and diagnosis.

Clearly there is scope for a good deal of more detailed work, such as establishing the correct relationships between environment variables and variables local to (parts of) the system, such as desired temperature in the example.

4. Conclusion

This section will discuss how these two approaches might fit into the SoftFMEA project work plan.

The StateBuilder approach should be fairly quick to implement and should result in delivery of software “which will generate failure reports for the case studies due to electrical failures”, the deliverable for SoftFMEA workpackage 3. This does depend somewhat on the nature of the case study systems, it would be safer to suggest that it should be able to run an FMEA on any system incorporating a network component whose functionality is capable of being modelled by AutoSteve. In other words, it will not cope with the difficulties of time discussed in Section 2.2 of Languages for simulation of network and software components.

It has been suggested that six months might be sufficient time for implementation of this method.

The “model framework” approach is assumed to be the meat of the project. It is hoped that evaluation of the StateBuilder tool will help identify the specific needs of the final tool. It is expected that this approach will allow network failures to be modelled, and that the framework will also provide a way of extending the functional modelling beyond the current capabilities, allowing coverage of the extra problems identified in Languages for simulation of network and software components.

It is expected that implementation of this will be a big job, but as the StateBuilder method should be quick, there will be extra time available. It is also hoped that much of the work for Workpackage 5 will be done in the early stages of development of this tool.

5. References

Internal SoftFMEA documents have not been referenced, they are referred to by title in the text. Where copies are not provided, they can be made available. Contact Jon Bell, jpb@aber.ac.uk.

[1] Timothy Thomas, Generic Network FMEA, Ford Motor Company, 2001

