
Modelling behaviour

Jon Bell

Doc. ref. SD/TR/MM/01: November 21, 2002

1 Introduction

This report is intended to raise questions on some areas of modelling network
and software systems that have not yet received much thought, at least formally.
Some informal consideration has been given to various areas not yet covered in
any previous reports, as noted in the progress section of my PhD first year
report.

The following areas are discussed.

• Interaction between structural, behavioural and functional models.

• Modelling failure mode behaviour.

• Extending functional modelling to show late achievement of a function.

• Modelling intermittent faults.

The idea is to suggest possible approaches, the hope being that discussion will
weed out the less appropriate ones.

These thoughts partly arose while writing the PhD report and also from
studying the Belt Minder system Statemate diagrams. Problems arising from
using different tools for modelling different parts of the systems will be discussed
in the section on interaction between models.

This report is a rather hurriedly produced draft, as I felt it worth noting
down some questions and ideas that have arisen and also I felt this to be a
productive way of using the last few days before going away.

2 Interaction between models

There seem to be good reasons for combining behavioural modelling with Au-
toSteve’s structural modelling for SoftFMEA, in preference to using functional
representation. These include:

• It is close to AutoSteve’s current approach, so we avoid re-introduction
of (redundant) component / subsystem level functional modelling, easing
model building.

• It seems to be an appropriate approach to modelling failure mode be-
haviours. This is discussed further in section 3.

1



• There exists an appropriate formalism for describing behaviours, state
charts being used both by AutoSteve and Statemate.

• Ford already use behavioural descriptions (in Statemate) for the design of
systems with complex behaviour.

This was the expected direction of the project - an early task was to examine
alternative languages suitable for behavioural modelling. Of these, the two best
candidates seem to be SDL or Statemate. A comparison of these and other
alternative languages has been produced [1] and I do not propose to cover that
ground again here. If we are to use another language, then the fact that Ford
already use Statemate suggests that that is the language to choose. However,
there is one difference between Statemate and SDL that might be worth con-
sidering.

In Statemate the system structure is specified in the module chart and the
interactions between state charts in the activity chart. There is a need to ensure
that a signal in a Statemate activity chart has a physical route, so there is a need
to check the correspondence between these charts. Statemate apparently does
this, but it is not clear how - it can, of course, be done statically rather than
as part of a simulation, rather like the way AutoSteve checks for consistency
between a component model’s structure and behaviour on saving the component.
In other words, Statemate has a structural view of the system which might be
redundant for our purposes, as the ECAD schematic might be used as the basis
of AutoSteve’s structural simulation. There might not be a one to one mapping
between state charts and components, of course, and this will clearly affect the
relationship between the Statemate activity chart and the ECAD schematic.

SDL has one class of diagram that shows the interactions between process
or between blocks of processes the “block diagram”. As the unit of execution
in SDL is termed a process, it seems unsafe to assume that these processes are
related to distinct components, there appears to be no SDL equivalent of the
Statemate module chart. This lack of a structural view of the system in SDL
might be argued to eliminate redundancy, if we are to use the ECAD schematic
as the structural view.

The limited transmit and received facility in State Builder already uses the
ECAD schematic as the structural view, describing routes for behavioural level
interaction between components.

One aspect of mixing structural and behavioural modelling for different parts
of a hybrid (electrical / software) system is where the boundary between the
structurally and behaviourally modelled subsystems is to be found. It will, of
course, typically be that component models will form the boundary, or cross
it, depending on the pint of view. It is currently the case that an AutoSteve
component model has structural and behavioural models and it seems the case
that this relationship will form the basis of the interface between structurally
modelled and behaviourally modelled subsystems. For example a switch ECU
will take electrical inputs (from the switch itself) and generate digital messages
as outputs. In other words its input side will be part of the structural (AutoSteve
/ CIRQ) simulation while its output side will be modelled behaviourally. This
can be captured (to a limited extent) using the transmit / received facility in
State Builder, but even here it is left to the user to make the behaviour relate
to all the electrical inputs. An obvious example is placing all the behaviour
in a high level “active” state entered if the component’s power supply is live.

2



All components to be included in the behaviourally modelled subsystem will
typically have this relationship with the electrical system, if no other.

The use of a separate tool for behavioural modelling exaggerates this, as
then the structural and behavioural views of the component will each be in
different tools. We might have a behavioural model in AutoSteve to bridge
the gap between the structural model and the other tool’s model, but seems
decidedly redundant as well as being extra work for the model builder.

2.1 The belt minder model

We have the Statemate state and activity charts for the belt minder system.
This system lights a warning light and sounds a chimer if the car is started with
the driver’s seat belt unbuckled or the front seat passenger’s seat belt unbuckled
if that seat is occupied. There are overrides, so that the belt can be unbuckled
for manoeuvring and the system can be overridden by buckling and unbuckling
the seat belt (I think!). I do not propose to discuss its behaviour in detail here,
merely to discuss the Statemate charts in terms of the points raised above. It
should be noted that the reading of the Statemate charts is speculative, so errors
are possible.

The interesting point for us is the relationship between the software and
electrical systems, in other words where these charts might fit in an AutoSteve
system.

As we have no module chart, there is no way of telling what component
an activity is to be associated with. It may well be that all activities in this
set are on one PCB. The first chart in the set shows the system input / output
requirements, and this shows several external components, which I think we can
safely assume would be shown on an ECAD schematic, so be distinct parts of
the electrical simulation. Many of the I/O signals are labelled “HW” as part
of the name, which I imagine indicates that they are hardware, and I suggest
implies they are electrical signals that could be modelled in AutoSteve. This
is supported by the fact that the sources are switches — those that detect
the buckled state of the seat belts, and that which detects occupancy of the
passenger seat. These can, I think, all be regarded as on/off switches, suggested
by the fact that the signals are treated as two valued (Boolean) variables. We
were told that the system did not use a network, so the nature of the output
signals, to external items labelled as “OP” — operator? These mostly seem to
be modelled as signals with two possible values (buckled or unbuckled) so again
it is quite feasible that they are actually models of electrical states — on or off.

If these speculations are correct, then the system can be regarded as taking
the place of an AutoSteve component model. The main difference being simply
the extra complexity. The boundary between the two levels of modelling would
be the signals. This means the behavioural model needs to detect incoming
electrical signals from the electrical model, and generate output ones. It would
also, of course, depend on the correct functioning of the power supply, which
has been omitted from the Statemate model, but would be part of an AutoSteve
one.

It is not clear from this model how failures are to be handled. Even if the
belt minder PCB is treated as reliably solid state, we might want to find what
happens if, say, the wire connecting the driver’s seat belt switch goes open
circuit. Assuming this signal is a model of an electrical signal, it is reasonable

3



to assume that one of its two values is represented by the absence of current,
and this value will be returned if the wire goes open circuit. It seems likely
that buckling the seat belt will close the switch, so an open circuit will mean
buckling is not detected. Clearly for mixed modelling these relationships will
need to be explicit.

The main conclusion from this seems to be that the model builder will have
to make correspondences between the models explicit. This is to ensure that the
structural and behavioural models correspond (there is a physical route for all
signals, for example) and to ensure that the translation between electrical states
and signal data types is specified. This is, of course, done in AutoSteve as the
conditions in the behavioural models are typically derived from the component’s
electrical state. If we are to use the ECAD schematic as the sole structural view
(to avoid redundancy), some explicit mapping between activities and compo-
nents might also be needed.

3 Modelling failure mode behaviour

Actually there seems to be little doubt of the way forward here. If we are to use
behavioural modelling (probably using state charts) for component’s behaviour,
extending the existing AutoSteve approach then a state chart can be used as
readily to model failure mode behaviour as correct behaviour, provided such
behaviour is defined. If it is not defined, is there a case for expressing the lack
in terms of non-achievement of a function? State charts should also be a suitable
formalism for including fault mitigation behaviour, this will add complexity to
the component’s state chart, but will be an accurate modelling of the intended
behaviour.

The obvious alternative to using behavioural modelling is to use some form of
functional representation. This has disadvantages. The most obvious of these is
the danger of reducing a subsystem’s failure to non-achievement of a function,
losing any unexpected consequences of the failure. It is not impossible, for
example, that a failure in an electrical part of the system also affects the power
supply to other components, even though this is not part of that subsystem’s
intended function. Therefore if all consequences to a failure in the subsystem
are to be modelled, there is a need for a more complex functional model of
that subsystem. This is not necessary if we use behavioural modelling. The
trend during development of AutoSteve has been to reduce use of functional
representation, as it was found to be redundant. It seems that attempting to
use functional representation here reverses that trend, so is likely to reintroduce
this redundancy and make a good deal of extra work for the user when building
the model.

Another question that arises is “what need is there to model a component’s
response to external failures?” Might a wire connecting an ECU to an operator
damage the ECU if it shorts to power? If so, how should this be modelled?

4 Late achievement of functions

The present functional labelling in AutoSteve associates a system function with
the output of certain significant components, so does not explicitly link function

4



with an input. Such a link seems essential for modelling late achievement of a
function, as we need to model the delay between the input and the achievement
of the function. The AutoSteve SCA tool does attach function to input, so that
unexpected functions can be recognized in SCA. This might provide a starting
point for linking function to input in FMEA. One disadvantage is, of course, the
loss of re-usability of the functional model. Having a functional model linked to
inputs implies that model having a greater knowledge of the system’s structure
than is the case - it needs the name and input properties of the relevant switch,
for example. One obvious way of avoiding this difficulty is to attach the expected
function to the input property, so a headlamp dip switch will have two positions,
“dipped” and “main” and each will have an expected function attached. The
difficulty here is if the new state of the switch depends on an earlier state, if the
switch is a toggle switch, for example. In this case the expected function needs to
be attached to the component’s behavioural description. The idea of attaching
expected function to the component has the same problem of hindering re-use -
a dip switch could reuse a generic toggle switch model if not expected functions
are attached, but not if they are. One answer would be to attach expected
functions to the component instance rather than the generic symbol.

Clearly, if we are to model late achievement of a function, we need to add a
deadline by which the function should be achieved. There seems no reason why
the present AutoSteve qualitative notion of time should not be used here. The
main difficulty is the danger that it is too coarse-grained.

The possibility of message delay could arguably simply modelled as a failure
mode for a network component. How this is modelled (all messages delayed or
some) is discussed in section 5. One possibility is to give the network some way
of modelling loading, and give the nodes some indication of priority, so that
some statistical probability of a message delay can be arrived at, and this added
to the FMEA report. This works for simple systems with no fault mitigation
strategy, but we actually need to specifically model a late message as an event
if such a strategy is to be exercised.

5 Intermittent faults

When a system uses a network, it is possible that, during period of high load,
some messages but not all will be delayed. Previous work has modelled faults
as continuous, but there is a possible need to model the late arrival of some,
but not all, messages. This is particularly important if a late message results in
a fault mitigation strategy being used, and this strategy is itself to be tested.
Various approaches are possible here, including attempting a model of the entire
network, which suffers from the difficulty that not enough will be known about
its behaviour early in the design life cycle. There also seem to be problems with
correctly modelling the interactions of a genuinely concurrent system consisting
of several ECUs. Another possible approach is to simply model all possibilities,
both have the fault occurring (so testing any fault mitigation strategy) and not
occurring, so testing normal behaviour. It might well turn out to be sufficient
to model all messages as being delayed so that it is a failure mode like any
other. Some probabilistic method might be used, allowing the user to specify
the priority of the messages in the subsystem under test and the network loading,
resulting in a probable delay being used, so maybe one message in ten is delayed.

5



This would allow an occurrence figure to be generated for the FMEA report.
This might be useful where there is no fault mitigation and a delay in a message
being received will simply result in a delay in achievement of a desired function.
This implies some method of capturing the priority of the message and possible
network loading, to allow the probability of such a delay to be arrived at. There
may be no need to model this specifically, we can simply treat late messages as
a failure model of the network.

6 Conclusion

It is perhaps too early to suggest solutions to the questions raised herein, several
possibilities have been outlined. These outlines are intended to spark discussion.
It is hoped that appraisal of the proposed initial State Builder based implemen-
tation will inform further consideration of these matters. It would also help to
learn more about fault mitigation strategies.

The “model framework” suggested in [2] might be considered a basis for
implementing some of these ideas. That notion was not closely defined in the
report, as that report was prepared hurriedly in time for the cancelled meeting
with Ford in February. At the time, I had in mind the idea of modelling each
subsystem fairly independently and using some sort of functional representation
to constrain the interactions between the subsystems. My current feeling is that
that is not appropriate, for the reasons outlined in section 3. We will (I imagine)
still need to model all components’ behaviours, therefore, it seems economical
of effort to use that level of modelling for the interaction between subsystems.
One possible approach is to devise a protocol to constrain such interactions, this
protocol being grounded in some concrete relationship between the two models.
The source of energy is one basis for such a relationship. Many of the necessary
correspondences between the models can be checked for statically, indeed it
might be that the the user will need to specify which component structural
model corresponds with which behavioural model.

References

[1] Jon Bell. Languages for simulation of network and software components.
SoftFMEA document ref. SD/TR/01, 2002.

[2] Jon Bell. Proposed approaches to network simulation. SoftFMEA document
ref. SD/TR/03, 2002.

6


