Events and Signals

Author: Jon Bell

Date: 19/3/02

Ref: SD/TR/FSM/03

1. Introduction

At the project meeting held on 15/3/02, there was a good deal of discussion on whether state transitions can be used to pass values, and I was actioned to look into this. These notes are intended to sum up my findings.

I shall start by briefly discussing the approaches taken by different state chart languages and will then go on to discuss questions that I feel arise from these findings.

The starting point for this discussion was the idea of using a composite state chart to model all components connected to a network, as the AutoSteve Statebuilder tool allows events to be passed from one part of a state chart to another. I suggested that it might be preferable to replace the top level of the proposed composite state chart (linking all the components) with an analogue of a Statemate activity chart, showing routes of signals between components. The suggestion was that these signals are distinct from the transitions in a state chart, and should therefore be modelled differently, though I accept that this might be a pedantic point. It was suggested that there was no objection to an event carrying a value, and that I should look at state chart languages for precedents.

2. Different languages’ approaches

Statebuilder allows a transition to send a named event to some other part of the state machine. This named event is triggered from any state which has an event (transition) of that name leading from it. The language does not seem to allow this to be combined with any other condition. There is also no mechanism (as far as I can see) for associating some value to this sent event. The Statebuilder GUI refers to transitions as events, which I fear may be giving rise to some confusion. This sending of an event is distinct from a transition, but is closely allied to the idea of a transition, as a transition will be fired. The sending of an event is (presumably) tantamount to sending a signal, but there is no explicit mechanism for defining the route of the signal. I still argue that it is strictly more correct to send a message (data, signal) across the machine which may (will?) entail the receiver in firing a transition, rather than sending an instruction to fire a transition across the state machine, which is what the Statebuilder facility amounts to. It is, I think, reasonable to suggest that when the message is an instruction (as in the case of the lighting systems) this distinction is somewhat pedantic, but it seems at least arguable that drawing the distinction will have advantages if we want to use this method to model less simple systems. This is discussed further in the next section.

Both Statemate and SDL appear to distinguish between a state transition, which occurs within a process, at a behavioural level, and a signal, which is passed between processes. In Statemate the signal routes are specified in an Activity Chart and in SDL in the block diagram. These will show the relationships between processes, and the processes themselves will be described using an extension of a finite state machine. A re-reading of the SDL and Statemate books does suggest that there is no mechanism for state transitions to carry values. It is I think the case that we wish to send messages between processes (components), so we are using the Statebuilder event sending facility in a way analogous to the idea of a signal in SDL.

In the meeting it was suggested I look into Mascot, the language used for design of concurrent systems. A brief look into this language failed to find a state chart. Mascot has system and subsystem diagrams, not so very different from the block diagrams in SDL, with paths linking the subsystems or the subsystem’s activities and intercommunication data areas (IDAs). In other words, a Mascot diagram is much closer to a Statemate activity diagram. It seems to be supposed that once you have finished subdividing activities (which approximate to (groups of) processes), you then start writing code. Though I guess state charts could be used at that level, they do not seem to be part of Mascot proper.

J.H. Conway: Regular algebra and finite machines discusses state machines in terms of states, inputs, outputs, transition functions and output functions. In that book, transitions are responses to input events, and (may) cause the machine to enter a new state, possibly giving rise to a different output event. He uses event in quite a different sense than seems to be the case in Statebuilder, but I suggest that if we accept that Statebuilder uses event to mean transition, then they remain a distinct entity from input events. The book does not appear to discuss building systems from several finite state machines, so does not deal with signals explicitly, but it seems consistent with Conway’s definitions to treat the arrival of a signal as an input event. In a Statebuilder state chart, the event is the electrical change that triggers the transition. He does not appear to support the idea of a transition carrying a value.

In UML, where the state chart describes the behaviour of an OO class, transitions are typically triggered by method calls, which, of course, may involve values as parameters to the method. This seems rather closer to the Statebuilder facility for sending events. It is perhaps worth pointing out that these state charts are intended to describe software systems, so the provision of explicit signal routes is less important. In a hardware system, the signal needs a medium to travel along.

3. Discussion

There seem to be a few points worth raising. Some of these were raised in the meeting discussion, but some are new points, which seem to add to that discussion. Some of these are pragmatic points, some are more theoretical (or at least pedantic!), though I have tried to show up practical difficulties that arise. I have tended to discuss questions rather than suggestions here, as I hope to get other opinions. I shall wind up the piece with my own tentative conclusions.

Investigations certainly seem to suggest that state based languages prefer to treat signals (between processes) and events (in the sense of state transitions) that are internal to a process as distinct entities.

Modelling signals and signal routes in an activity chart does raise the problem with both SDL and Statemate that such signals tend to be modelled with a definite destination, so it is a poor modelling of broadcast messages. The state chart I showed at the meeting suggests a possible approach to this, by having a high level “region” which all messages sent to are assumed to be sent to all processes within that region. This is equivalent to the CANbus state that wrapped the two terminal components, each in its own concurrency group. There seems to be no equivalent of this in Statemate or SDL, so there may be some objection to the idea? I can see no reason why modelling broadcast signals in this way at this level is any more objectionable than doing it using events.

Signal routes can readily be derived from the ECAD schematic (a net, perhaps). This could also be used for specifying destination components (if not states) of sent events.

As named events triggered by sending the event from elsewhere in the state chart cannot be combined with other condition, in the CAN lamps state chart I have placed the electrical conditions on which the control behaviour depends in the states. This is incorrect, as presumably the state transition itself will not take place if the ECU is inactive. Having the events triggered by an incoming signal avoids this problem as the transition can depend on both conditions. This is arguably a pretty weak point, as a better way of modelling the dependence on the ECU being “live” would be to have it moving from an initial state (“inactive”) to an “active” state once the power supply goes live. All the actual control states (“lamps off” etc) will be sub-states of the active state.

Events sent elsewhere in a state machine have no explicit routes – a plus in that they model broadcast message, but difficulties might arise where not all such events are broadcast, as in the case where the CAN terminals are separate components. It is possible to avoid this by specifying a destination state (I THINK - CHECK!!!!).

Sending events complicates the state charts. Where the messages sent over the network are instructions (as in the lighting systems) this can be sidestepped, but a data message will not always result in the same state transition in the receiving process. Note the different reactions of the heater control ECU to otherwise identical messages from the sensor, differing only in the value of temperature relative to the desired temperature. To send these as events requires an

interim state in the ECU, something like “processing input” which decides whether a changes from heating to not heating is necessary. There is no particular difficulty here; indeed this is how the response to a signal would be modelled.

How well does this fit in where the same data message might give rise to different events at different receivers?

This may be a (further) pedantic point, but if the only state transition a message triggers is to “processing input” – is it not tantamount to a signal? After all the data sent by such an event is more significant than the transition, which is always the same. As events are internal to a process and signals external, is it not better encapsulation to send messages from one part of a state chart to another, not showing what event is triggered by the message? To put it another way – arguably the signal should not “know” what event it might trigger.

Allowing events to be sent across a state chart could encourage sloppy modelling, with behaviour being transmitted rather than signals that need a response modelling in the receiver’s state chart. In the case of simple open loop system, this might be tolerable, but will users take questionable shortcuts if the possibility exists? This seems similar to the shortcuts which might be taken by misuse of the output property detection feature of AutoSteve. How real is this danger? Might interesting (and important) behaviours be missed by doing this? It also might lose some processor behaviour. For example, in the heater circuit a modeller could realise that the interesting message is when the temperature gets above the desired temperature, decide that that is the behaviour that needs modelling, so model the sensor as sending the event “stop heater”. This means that the ECU no longer needs have a model for testing the sensor input, so the model is weakened and (possibly) failures lost. This certainly seems to be a danger.

Given that an event that carries data is tantamount to a signal, it is no more complicated to create a top level activity (or interaction) diagram than it is a top level composite state chart, as they are the same thing. It clearly requires an extended language to handle it, but once we transmit data we need some of these extensions anyway. The top level chart can still be generated from the schematic, by identifying components joined by network (as distinct from electrical) connections, and treating all components joined by a bus as receiving all messages from any other such component. There is therefore no need for an explicit representation of the chart. We need to identify signals by sender, but there is no difficulty here. I am not certain that it does not ease modelling using signals, as there is no need to coordinate the events across the top level chart. It seems more natural to model a sending process (component) in terms of the messages it sends, rather than the events it might trigger in its receiver(s).

4. Some conclusions

I remain inclined to the idea that message passing is better modelled in terms of signals than events. The signal might (will?) cause an event at the receiver. The most important reasons I can see for not taking this approach are : -

· We want to allow the modelling shortcuts outlined above, for simplicity of modelling.

· We are happy to limit the use of this approach to closed loop systems (in which case we arguably need not add passing of values at all) and consider the modelling of closed lop systems as a separate issue.

It may well be the case that the distinctions I have drawn are rather pedantic, but unless we do simply want to implement this method as a quick (and limited) solution, the balance of advantage seems (admittedly narrowly) to be in favour of distinguishing between events and signals. This conclusion seems to be supported by the distinctions drawn in Statemate and SDL between state charts and activity or block diagrams.

It has already been demonstrated that the existing Statebuilder language can be used to model network message passing in some simple cases (the lighting systems). If we are content that this approach only be applied to such systems, there is no need to change the state chart language. However, I tentatively suggest that if we decide to extend the existing language to allow passing of data, there are arguments in favour of extending it to allow modelling of signals similarly to SDL, rather than adding data to the existing event sending facility. The extra work would be slight, and there seem to be advantages in terms of simpler and more reliable model building.

5. Sources consulted

Conway, J H: Regular algebra and finite machines, Chapman and Hall, 1971

Harel, D and Politi, M: Modeling reactive systems with Statecharts, McGraw-Hill, 1998

Olsen, A et al: Systems engineering using SDL-92, North-Holland, 1994

Pooley, R and Stevens, P: Using UML – software engineering with objects and components, Addison-Wesley, 1999

1 of 4

