Functional modelling for SoftFMEA

Jon Bell

Doc. ref. SD/TR/FR/01: June 17, 2003

1 Introduction

This report discusses functional modelling in AutoSteve, specifically its limitations
with respect to SoftFMEA, and it will introduce possible approaches to solving
the resultant problems. Recent discussions have resulted in a set of questions for
SoftFMEA to consider. These are listed in [2]. Many of these are concerned with
behavioural modelling but some are more concerned with the functional modelling
side of AutoSteve. The need to start a thread of research into functional modelling
is also raised in [2], as are some possible answers to the questions listed therein.
This report will expand considerably on the material on functional reasoning in that
report.

Some familiarity with AutoSteve is assumed, however Section 2 will briefly dis-
cuss functional modelling as applied to AutoSteve. Two main areas where the ex-
isting arrangements for functional modelling seem insufficient have been identified,
each area is discussed in the following sections. These are problems associated with
timing, discussed in section 3 and function dependent on complex behaviour, sec-
tion 4. Section 5 will introduce and discuss possible solutions, including alternatives
where they have been identified. A following section (section 6) will then briefly
discuss functional modelling problems associated with fault mitigation.

2 Functional modelling in AutoSteve

It might well be argued (especially by those reading this report!) that an internal
report is not the place for a lengthy background discussion of functional modelling
and its place in the AutoSteve system. However, it is felt that a brief discussion is
worthwhile for two reasons. The first is to give readers the opportunity to correct
any misapprehensions about AutoSteve functional modelling which might lead to
poor arguments in this report and the second is simply that as this report is likely
to inform later, more extended works that will require such material, some discussion
here will be useful in future.

Chittaro and Kumar, in [3] list functional knowledge as one of four useful classes
of knowledge in model based reasoning. These four classes of knowledge are: -

e Structural — what is in the system and how are these elements connected?

e Behavioural — how does each element work?
e Functional — what does each element do?
e Teleological — what is each element for?

It can be argued that in a given case, not all these classes of knowledge need be explic-
itly represented. For example, Hawkins and Woollons, [4], use functional modelling
of their components as the dynamic aspect of their simulation, so have no need of
an explicit representation of components’ behaviour.

AutoSteve takes the opposite approach and uses a behavioural representation
of components in simulation and relates function to the system. There is therefore
(arguably) overlap between function and teleology. Components have no individ-
ual representation of function, function instead being treated as an aspect of the
system, mapping between the system’s purpose and component behaviour. This is
an example of the “associational” representation of function, as distinct from the
definitional representation used by Hawkins and Woollons. This simply means that
function relates both to behaviour and teleology while a definitional representation
of function will describe the function in terms of predefined primitives.

product derived from

derived from v interprets - | ‘
. system system
system schematic —_ —»‘ behaviour ‘_ pu— _>‘ R }4——? purpose }

I Y Y . 2

subsystem
or added to derived from

|
|
module |
|
|
|

output properties

component _>
component m"r"_ y

domain
varigbles

state chart ‘

structure behaviour function teleology

Figure 1: The models used by AutoSteve

Figure 1 shows the models used by AutoSteve and the relationships between
them. Component behaviour is mapped to system function using component “out-
put properties”. A lamp, for example, will have the output property “glowing”
which might simply be associated with the state (behaviour) of having current flow-
ing through the filament. It might be suggested that this output property is properly
a mapping between behaviour and function but it has been found that this mapping
is so simple that there is little benefit in an explicit functional model of a component.
Associating a generic lamp function (call it “lit”) to the output property adds no
information. It fails to relate the property to purpose, as the purpose of the lamp

will depend on the system, and indeed on its role in the system. For example, a stop
lamp has a different purpose from the headlamp of a car. As the lamps themselves
might be identical (qualitatively), using the output property in preference to a tele-
ological function aids component re-use. This is discussed in [6]. It should be noted
that while this is true with respect to the component, it is not true with respect to
the system. There is nothing to prevent a user from associating a function with a
single component, and using these subsidiary functions to build up the full system
function, as suggested by Neal Snooke in [7]. However, AutoSteve does not allow
the user to explicitly link a function to a component as opposed to a system. The
idea of a hierarchy of functions suggested in [7] uses logical operators (AND and
OR) to combine the subsidiary functions. In practice it is necessary to attach each
component’s output to a its own function. This is because in running a failure mode
and effects analysis (FMEA), the results are expressed in terms of achievement of
(system) functions. Therefore if, say, a car lighting system’s sidelights on function is
linked directly to the two sidelights’ output property, then when one lamp fails the
function will, correctly not be achieved. However, it is also necessary to find unex-
pected achievement of a function, so if a failure causes one of the lamps to remain
lit whatever the switch position, this will not result in unexpected achievement of
the sidelights on function as it is never achieved unexpectedly, being dependent on
both lamps being lit. If the sidelights on function uses two subsidiary functions,
right sidelight on and left sidelight on, then if, say, it is the left bulb that is on all
the time then the left sidelight on function will be achieved unexpectedly and this
will be shown in the FMEA report.

Function is a relational concept — it defines the relationship between behaviour
and purpose and may also help define the relation between a component and its sys-
tem, as outlined above. Another important relationship defined by function is that
between input and output. This is clearly more important in an operational function
(such as in [4]) but also applies to the purposive functions used in AutoSteve. How-
ever, when setting up a system’s functional model, input is not explicitly specified in
AutoSteve. Instead, in FMEA, the correct system inputs for a function (that is, the
switch settings when the function should be achieved) are derived from the initial
simulation, when the system is simulated with no component failures. This further
simplifies functional modelling, but means that design verification is not done, the
idea that correct achievement of system functions can be derived from correct oper-
ation of the system implies the design is also correct. It should be pointed out that
the user might specify the correct inputs associated with a function as they are used
in Sneak Circuit Analysis.

The Aberystwyth approach associates function with the system and behaviour
with components. This contrasts with the approach taken by Sticklen et al [§]
where behaviour is associated with a function, describing how a given system func-
tion is to be achieved. This relationship is shown in figure 2. This approach places
more emphasis on the user providing the specific models required for analysis, while
the models required by AutoSteve are more readily available. The component be-
havioural models required by AutoSteve are more generic, as the behaviour is not

explicitly related to system function. This makes them more reusable.

product

device device
function

e
> component of
\J

sub-device
function

system

subsystem derived m} \
or

module

AN component of

A
component
function

component »
component behzgiour
defines

structure behaviour function teleology

Figure 2: The models used by Sticklen and others

It will be seen from the foregoing that there has been a consistent tendency
to simplify functional modelling in the development of AutoSteve — component
functional models are not used, and even the inputs to system functions are derived
automatically on running an FMEA. Unfortunately, while this simplicity is desirable,
it causes problems when modelling the kind of complex systems that are the subject
of the present project. These problems will be described in turn, and possible
approaches to their solution introduced.

3 Timing and function

There are two aspects of timing that might impinge on functional modelling. One is
where the timing of the output is significant, so a function might be achieved late and
the other is the timing of input, so an input might have distinct effects, depending
on when it takes place. These aspects are to be expected if function is a mapping
between input and output. They are each discussed in their own subsection.

3.1 Late achievement of functions

With the increasing use of networks in vehicles, the possibility arises of a system’s
operation being delayed by late transmission of a network message. This is espe-
cially true where CSMA /CR protocols such as CAN are used, where low priority
messages might have to be transmitted several times before they are received, pre-
vious transmissions having been lost through arbitration resulting from a message
collision.

Detecting late achievement of a function requires more explicit coupling between
input and required output. While at present the function “headlamps dipped”
might be defined simply in terms of output, so it is achieved whenever both the left
headlamp and right headlamp are on dipped, if we are to capture late achievement of

the function we need a deadline. This must be measured from the time the required
input has been entered, so the required input arguably needs to be specified. In
practice this need not be the case, as the correct input can still be derived from the
simulation with no component failures. All that would be needed is some way of
setting the deadline itself.

AutoSteve can simulate using a qualitative or quantitative notion of time, either
could be used to specify the deadline. The simulation with no failures cannot be used
to establish this deadline, as this would mean that any increase in time to achieve
the function, no matter how insignificant, would result in late achievement of the
function. It is possible that relying on the initial simulation might be acceptable
if qualitative time was used in setting the deadline. If the correct simulation had
the function achieved in milliseconds and a failure resulted in it only being achieved
in seconds, this could be regarded as being sufficient to regard achievement as late.
However, even in this case, if a function was achieved instantly in the correct simu-
lation and only achieved after microseconds because of some failure it might well be
the case that the delay is not significant, despite the order of magnitude difference
in the time slots in which the function was achieved. Also, of course, relying on such
large orders of magnitude might make a significant delay undetectable — correctly
the function might be achieved in say 25 milliseconds while a failure that results in
it not being achieved for 500 milliseconds might well be beyond the deadline, despite
the delay being in the same order of magnitude time slot.

While all the foregoing is conceptually quite simple, it does lead to problems.
The most important of these is the need to capture inputs where a component has
memory. For example, it is easy to model a dipped headlamps function where it
depends on, say, the dip switch position. It is a good deal less straightforward if
the dip switch is a toggle switch, so pressing and releasing it results in the states
swapping — the new state depends on the old state. This might imply that we
should be prepared to map function to state rather than simply to input. Can this
lead to problems if such a component has failure modes that alter the relationship
between inputs and states? It certainly reduces the neat implicit mapping between
system inputs and outputs and function. Possible solutions to this problem are
introduced in section 5.

3.2 Timing of input events

One aspect of complex systems that has not had much consideration so far is the
significance of timing of input events. For example, the “belt minder” case study
used as an example in section 4.1 allows the driver temporarily to disable the warning
system if he unbuckles his seat belt within a certain time (three seconds). This, of
course, means that the same user input has different effects, depending on the time
that has passed since the previous input. There is currently no way of capturing
this information.

This requires some refinement of the scenario and simulation tools to allow the
timing to be captured. How this is captured requires more thought. It should

not be attached to the component as it is an aspect of the system behaviour, not
the component behaviour. It therefore seems reasonable to suppose that it will be
attached to a system model. There is more on this in the subsections on possible
approaches, sections 5.1 and 5.2.

4 Function and complex behaviour

Two aspects of system function being dependent on a complex behaviour have been
identified — where a function depends on a complex behaviour to be correctly
fulfilled and where a system function is apparently a steady state, but more detailed
modelling of the behaviour reveals more complexity, such as a cycle. This latter case
is felt not really to be concerned with functional modelling but has been included
briefly for completeness.

4.1 Functions dependent on complex behaviour

Recent work on a case study (the “belt minder” system) has shown that modern
systems might well require system function to be mapped to complex behaviour,
dependent on the correct relationship between different components behaving cor-
rectly.

The purpose of the belt minder system is to warn the driver of a car if he drives
off with his seat belt unbuckled or his front seat passenger’s seat belt unbuckled, if
there is a front seat passenger. There are two warnings. A dashboard warning light
will come on and stay on and a chimer will sound intermittently for a period of time
before stopping.

Correct functional modelling of the warning function needs to be associated with
correct behaviour of both warnings. The lamp, as it comes on and stays on, is simple.
The chimer is more complicated and cannot readily be modelled with the existing
functional modelling, though the use of the sequence feature might help here. This
is made worse by the fact that AutoSteve simulation continues until a steady state
is reached, when the functions are checked. This means that the functional model is
only used once the chimer has stopped working, so it should be off. In figure 3, the
simulation will stop once it reaches the state time_is_out, when the chimer will
not be sounding.

If we are to model the chimer as a simple electric buzzer that sounds when current
flows through it and is otherwise silent, then the control behaviour necessary for
its intermittent sounding will come from some other component. Therefore correct
achievement of the warning function must depend on correct achievement of a chimer
sounding function that in turn depends both on the chimer going off correctly and
on its being correctly controlled by its controller. It is worth pointing out that
simply combining these two behaviours using logical AND is insufficient, as both
components might work correctly, but a fault in the connection might means one is
not driving the other. Therefore the function needs to be based on the output, not
simply the component behaviours.

v T ~ -
belt_mincler_active

:a:{lvz_star(finel_unbuckled seguence

- = fire i start_seguence

weait I BELT_DET.i = INACTIVE; > l:%{'\f{ g:EE&O
“find_buclled

BELT DET.i=ACTIVE:

luckle_uy
fire i BELT_DET.i = ACTIVE;

Y L INE 5 :
bkl ed IF; MSWJ A iﬁpi.;ﬁ'{‘é: Eﬁ”d-gg"me i k chirme
e e after 20 Seconds;
[‘ CHIMER_SW.r := INFINITE; CHIMER SW.r = PERD,

A

buckle_ater
fire BELT DET.i = AGTIVE;
SEBWIL_SW.r:= INFINITE:

encl_sequence
fire after 432 Secomds;

time_is_out SRR R e

Figure 3: The behaviour of the chimer controller when the warning is sounding.

It is possible that the existing sequence facility int eh functional modelling tool
is sufficient here, but it needs to be established that it is so reliably and in all cases.
It might well need some refinement, as it will be worth capturing the timing of the
sequence of events. This needs investigation.

4.2 Cyclical behaviours

One other aspect of behavioural complexity which warrants some consideration is
cases where an apparently steady state is actually a cyclical behaviour. One example
might be a lighting system in which the lights are switched on automatically triggered
by input from a sensor. In this case, a likely behaviour is that the sensor periodically
sends its current reading to the controller, even though in most cases, this will result
in no change of state.

This is arguably a behavioural modelling problem rather than a functional mod-
elling one. After all, there is no need to define the periodic sending of sensor readings
in terms of system teleology. It has been included here for the sake of completeness.
Indeed, it could be argued that attempting to capture this detailed information in
a functional model leads to a reduction in the re-usability of the functional model.
For example, there is no need for this model to show that the sensor periodically
sends its reading, as the same functional model could be used with a more intelli-
gent sensor that did only send a reading hen the change was sufficient to result in a
change of function.

This case suggests that while the in situation outlined above (in section 4.1),
the function depends on the complex behaviour, in this case the function does not
depend on the complex behaviour. This supports the idea that this is a behavioural
modelling question rather than a functional modelling one. For completeness, there
is material on this in the sections on possible approaches, sections 5.1 and 5.2.

It is worth noting that there is a more complex case related to this, where there

is feedback in the system. A previous report, [1] has dealt with this, and it is not
considered further here.

A further aspect of this, that is not covered here, is the need for the simulator
to identify a cyclical behaviour and stop the simulation once one has been identi-
fied. This is clearly a behavioural modelling and simulation problem rather than a
functional modelling problem.

5 Possible approaches

The sections above, Sections 3, 4, suggest a need for a more sophisticated functional
model. Various approaches to building this model are discussed below.

Because of the need to express input more explicitly, to allow deadlines to be set
in modelling late achievement of functions, the existing functional model is too sim-
ple. Simply adding the right input to a function is not possible using this functional
model, as in some cases the effect of the input will depend on the current state of the
system, such as when a toggle switch is used to switch between desired functions.
We therefore need to add some sort of representation of system behaviour to the
functional model. This should also help with describing functions that depend on
complex behaviour. Two possible approaches to this are described below.

5.1 Use the FMEA scenario

While the complex behaviour within a single function might be capable of being
modelled using the sequence facility in the existing function builder, the need to
capture inputs that depend on a previous state of the system, such as the toggling
of the dip switch, mean that some means is needed of relating input to system state.

One simple approach to this is to use the existing scenario editor. An FMEA
is specified by a scenario that specifies what inputs are to be tried, and in what
sequence. AutoSteve already has a user interface component that allows these in-
puts to be specified, and it would be quite straightforward to allow this tool to be
used to let the user specify the expected functions associated with each successive
input. Therefore once the headlamps have been switched on and are dipped, the
next press action on the dip switch should result in the system switching to main
beam. It would not be difficult to specify a deadline at the same time, to allow late
achievement of a function to be detected.

This approach has the benefit of simplicity, and of demanding little extra work
from the user. However there are drawbacks.

The most important of these, from a theoretical stand point, is that the functional
model is dependent on the scenario. Therefore, if the scenario is not complete,
neither will be the functional model, and some functions might remain untested.
As a side effect of the functional model being dependent on the scenario, it cannot
readily be reused. There will, it is supposed, be a similar functional model to the
existing one that can be re-used as readily as at present, all extra features being
attached to the scenario. This does not answer the problem that deadlines for

achievement of a function are attached to the scenario, so if different scenarios are
used, the user will need to ensure that these aspects are consistent.

A related problem to this is that the functional model will not be available
without running the scenario. Therefore it will not be available when running a step
by step simulation.

This approach also relies on the ability of a function to capture complex system
behaviour, no additional functionality is added here. This might well not be a
problem, provided the sequence facility is both reliable and sufficient in all cases.
This remains untested at the time of writing, this is an early task in investigation
into functional modelling.

This approach is well suited to the idea of capturing the timing of inputs in
the scenario, of course. Indeed as this is an aspect of the scenario, rather than
the functional model, some way of adding the idea of timing to inputs is necessary
whatever approach is taken.

As no support is offered to capturing complex behaviours in a function, this
approach does not help with identifying a function with a cyclical behaviour.

5.2 System functional model

In view of the drawbacks with the approach outlined above, a better approach
might be to construct a functional model that specifies the required behaviour of
the system. Such a model for a simple running lights system might look like figure
4. Tt could be argued that this is a species of requirement specification in that it

LIGHTS_OFF SIDES_ON:deadline 0.5 PARKING_LIGHTS

A4

A

LAMPS_OFF:deadline 0.5S

‘r AUTO_OVERRIDE:deadline 0.5S

LIGHT_DIMS: LIGHT_BRIGHTENS:
deadline 0.58 deadline 0.5S

HEADS_ON:
HEADS_OFF:deadline 0.5S deadline 0.5S

A 4 h 4

AUTO_LIGHTS /| MAIN_BEAM \) MAIN:deadline 100mS DIPPED_BEAM

/ N
/ \

/ 3

/ \ . " >
/ \ DIP:deadline 100mS
\

MAIN_BEAM

- “ T TAIL_LAMPS

HEADS_MAIN TAIL_LAMPS
AND LEFT_TAIL_LAMP and
RIGHT_TAIL_LAMP

Figure 4: Required functions for a lighting system.

captures the intended behaviour of the system. In other words it shows what the

designer intends should happen, not what does happen. For example, the diagram
specifies that the system is to have an input that allows the parking lights to be
switched on when the lamps are off, but that there is no need to switch directly
between off and headlamps on. This, of course, allows the use of a rotary switch.
The diagram therefore maps between purpose and the required (expected) system
behaviour, perhaps a fairly complex representation of teleology. The functional
hierarchy for the tail lamp function has been included as an example of how the top
level functions should map down to individual component functions that in turn will
map to component outputs. The required inputs will also map to component inputs.
How far down the hierarchy the suggested graphical notation is used might depend
on individual cases. Here, each function will simply be a logical combination of lower
level functions, as shown for main beam, and so there is perhaps no need for the
graphical notation below this top level. However the warning function in the belt
minder system discussed in section 4 might involve behaviour of sufficient complexity
that a graphical notation might be helpful. There would seem to be no problem in
having a graphical notation, similar to a state chart to describe behaviour to be
associated with a function. The use of a functional hierarchy is not new, of course,
see [7]. What is new is the expression of required behaviour in the functional model,
a mapping between the top level functions and inputs. As an aside, it is worth
pointing out that we might enforce a 1:1 mapping between function and output by
not allowing the use of logical AND between component output properties when
defining a bottom level function.

There is no reference here to how the required inputs are generated. The light
switch could be a three position rotary switch on the dashboard and the dip switch
separate, such a s a stalk on the steering column or both switches might be the
same physical component. There is also an implicit need for a sensor to detect the
ambient light level. This supports the idea that the functional model is reusable for
any lighting system with this behaviour, it does not depend on the actual system.
For example, all it demands is an input switching between dipped and main beam
- the dip switch could be a toggle switch or have distinct positions for the two
functional states. How far the model can be reused is interesting, as it depends how
far down the hierarchy we try to use the model. For example, the top level functional
diagram could be used for a motorbike, but the idea that, say, the tail lamp function
contains left tail lamp and right tail lamp is not reusable in this case. As reusability
of the functional model is an important advantage of this approach over the scenario
based approach introduced in section 5.1 this question needs addressing. A suggested
solution is to include all system functions in this model, merely mapping these to
actual outputs and inputs on attaching the functional model to an actual system.
This would, of course prevent the model being reused where the functional hierarchy
differs, as in the motorbike example.

As the functional model does not specify how the inputs are generated, some way
of attaching actual inputs to the functional model’s “abstract inputs” is needed.
A suggested approach here is to “instantiate” the top level functional diagram,
replacing the generic input labels with actual system input properties, as in figure

10

5. The modelling here assumes the use of a toggle switch for dipping the headlights

LIGHTS_OFF LIGHT_SWITCH property.position = SIDE PARKING_LIGHTS

A 4

LIGHT_SWITCH property.position = OFF

LIGHT_SWITCH
property.position = SIDE
LIGHT LIGHT

LIGHT_SWITCH LIGHT_SWITCH
proerty.level = DIM proerty.level = BRIGHT

property.position = SIDE property.position = HEAD

A 4
AUTO_LIGHTS MAIN_BEAM

\ 4
DIPPED_BEAM

DIP_SWITCH
. property.pulled = TRUE
<

e
DIP_SWITCH

property.pulled = TRUE

Figure 5: The lighting functions, attached to a specific system

and also that the light level is an input property of a sensor component. The main
problem is capturing the idea that the dip switch being pulled are separate events —
the system will not cycle between main beam and dipped while the switch is pulled
on! This way of modelling the sensor is adequate in this case, there would be no
difficulty in modelling failure mode behaviours that failed to transmit the required
change of system state to achieve the auto on function.

The most important disadvantage of this approach is the additional work asked
of the user. It is appreciated that drawing a top level functional diagram for the
belt minder system will not be straightforward! However, once the functional model
has been generated, mapping it to actual system inputs should be straightforward.

A compensatory advantage is that there seems to be a possibility of using this
diagram to automatically generate a suggested scenario. One difficulty here is that
the meaning of the diagram is not unambiguous. For example it specifies an input
from off to parking lights on, but does not explicitly rule out an input leading to
switching from lights off to dipped headlights. Of course, it would be quite possible
to take the meaning that all intended functional changes are included in the diagram,
so other changes need not be tested for. The difficulty of automatically generating
a scenario centres on this point - should it try unspecified changes (where an input
is available) to ensure that unintended effects are not found? A related problem is
constraining behaviour of input components. A scenario might, for example, attempt
to switch between, say auto on and headlights on by switching directly from light
switch off to light switch heads, but if the light switch is a three position rotary
switch, this transition is impossible.

As has been noted above, when running an FMEA, the timing of input events
is clearly an attribute of the scenario, not the functional model, so some means of
adding this information is needed in the scenario tool. The more detailed functional
model, will show the need for such timed events, but that is all it will do. Such
events will, of course, want to be included in any automatically generated scenario.

While it is supposed that cyclical behaviours will not necessarily be specified in

11

the functional model, as discussed in Section 4.2, the graphical notation could be
used if such behaviour was to be specified.

It is perhaps worth adding a brief description of how this extra model might
be incorporated into the use of the tool. As was implied by the suggestion that it
amounted to a sort of requirements specification, it is imagined that the functional
model would be the first model created in developing a new system. Obviously
this will not be done if an existing functional model can be re-used, or an existing
functional model could conceivably be copied and modified (for example if minor
changes such as deadlines for achievement of functions) were all that was to be
changed. Once the system had been drawn and components’ input and output
properties specified, these could readily be mapped to the functional model, much as
is done at present. The functional model can then be used to inform the generation
of a scenario that tests all the necessary system behaviour and functionality. In
future, as suggested above, it might be possible to automatically generate a suggested
scenario, which the user could modify if necessary, using the existing scenario editor.

This approach has a good deal in common with the earlier work on design verifi-
cation, see [5]. Indeed it is quite possible that the proposed functional requirements
diagram could be used for design verification. The design verification work used an
attainable envisionment to generate a state chart of the system’s actual behaviour
that could be compared with the required behaviour.

5.3 On capturing system behaviour

Both the alternative approaches described above are concerned with capturing the
intended system behaviour (that is a more elaborate teleological model of the system,
not a behavioural model of the whole system). There is no need for a behavioural
model of the system to be made by the user — that is the job of the simulator. Asthe
simulator alternates between structural and behavioural simulation, it builds up a
step by step picture of the system’s response to an input. This can be compared with
the functional model’s required behaviour to establish whether or not the required
function has been achieved.

In the case of the scenario-based functional specification, this will need to use
the existing sequence functional specification (or some suitable refinement of it), or
will need to compare the behaviour resulting from an input during a failure mode
simulation with the correct (no failure) simulation.

The complex functional model will allow the user to specify the expected be-
haviour for a function to be achieved, and the simulation’s behaviour can be com-
pared with this.

6 Fault mitigation and functional modelling

It should perhaps be pointed out that as yet, little thought has been given to fault
mitigation, but it is to be considered later in the project. It seems reasonable

12

to introduce possible problems this might give rise to with respect to functional
modelling, and to speculate on possible approaches.

The major question here seems to be whether fault tolerant behaviour gives rise
to some sort of alternative function. For example, an electronic ignition system will
adjust the timing of the spark to suit the current conditions under which the engine
is running, but in the absence of input from some sensor might resort to a default
approach to timing. The question is whether this can or should be regarded as a
distinct function, which can readily be included as such in the top level functional
diagram. It seems reasonable that it should, as this fits well with the functional
diagram’s presumed réle in requirements capture. It is imagined that the required
fault tolerant behaviour will be specified as a requirement. It is appreciated that
drawing such a diagram for a system which is to have much complexity in its fault
mitigation strategy will not be easy but if we are to accurately simulate a system,
we need an accurate model — the more complex the system, the more complex will
the model be.

The scenario approach outlined above (in section 5.1) does not readily allow any
fault mitigation behaviour or functionality to be specified. This is because it only
allows the user to relate input to function, not input and failure to function. It is
appreciated that it would be possible, if inconvenient, to allow the user to specify
the expected output given both the input and failure but this would be extremely
cumbersome.

The functional model described in section 4 could allow the user to add specific
fault mitigation functions, reached only when there is a failure. These might either be
added to the same diagram, or there might be a separate diagram that specifies the
system behaviour when there is a specific fault, in a similar way to the possible use of
a separate state chart if a component’s failure mode behaviour needs a description.
Which of these two alternative is preferable needs more thought.

7 Conclusion

This report has set out two areas in which the current AutoSteve functional model
appears to be inadequate for the types of system SoftFMEA might be expected
to model. Two possible solutions are proposed. Of these the functional diagram
approach seems more “correct” in that the notion of function is kept more indepen-
dent. It is, perhaps, an open question whether this correctness justifies the greater
elaboration in modelling. At the time of writing this draft, there is room for more
work on how well the functional diagram works with complex functions.
Underlying this report is the relationship between models in AutoSteve. This has
so far been kept quite simple and well defined, however the complexity of modern
systems appears to militate against these qualities. This is seen at both the be-
havioural and functional levels. At the behavioural level we now have components
behavioural models affecting each other with no intervening structural simulation,
although, of course, it is important that the structural model provides a suitable con-

13

duit for this message passing between components’ behavioural models. An example
is the need for a physical connection along which CAN messages can be passed. At
the functional level we might wish to describe functions whose correct achievement
cannot simply be defined in terms of a single component’s output, such as the chimer
output in the belt minder system. This means we need both a more complex func-
tional model (specification) that describes the required behaviour and some means
of comparing this specified behaviour to the actual behaviour of the system.

One important feature of the AutoSteve modelling is the clearly constrained
relationship between the different models, both at the component and system level,
as shown in figure 1. We need to preserve this as fully as we can. Some principles
we should try to maintain are: -

e All connections between components are defined in the structural model. This
might need to be weakened in the case of sensors that detect the effect of the
output of another component.

e No component should know how any other component behaves. It can, of
course, know what outputs another component can give, provided there is some
means by which this output can be detected or received by the component.

e The functional model does not know how the desired outputs are achieved.
For example, the belt minder functional model does not specify that the GEM
generates the intermittent behaviour for the chimer.

Two approaches have been discussed. The idea of using the scenario is simple
and demands little extra input from the user. However its problems suggest that
the more elaborate (and correct) functional model approach is to be preferred. That
approaches offers advantages, apart from its correctness, including better support
for modelling functions that depend on complex behaviour, greater re-usability, and
better support for modelling fault tolerant functionality.

References

[1] Jon Bell. The heater circuit - matters arising. Soft FMEA internal report, 2002.

[2] Jon Bell. Softfmea: Questions, approaches and answers. SoftFMEA document
ref. SD/TR/GEN/01, 2003.

[3] Luca Chittaro and Amruth N. Kumar. Reasoning about function and its appli-
cations to engineering. Artificial Intelligence in Engineering, 12(4):331, 1998.

[4] P. G. Hawkins and D. J. Woollons. Failure modes and effects analysis of complex
engineering systems using functional models. Artificial Intelligence in Engineer-
ing, 12(4):375, 1998.

14

Alex McManus, Christopher Price, Neal Snooke, and Richard Joseph. Design
verification of automotive electrical circuits. In Proceedings 13th International
Workshop on Qualitative Reasoning, Loch Awe, Scotland, 1999.

Christopher J. Price. Function-directed electrical design analysis. Artificial In-
telligence in Engineering, 12(4):445-456, 1998.

Neal Snooke. Hierarchical functional reasoning. Knowledge-Based Systems,
11:301-309, 1998.

Jon Sticklen, A. Goel, B. Chandrasekaran, and W. E. Bond. Functional reasoning
for design and diagnosis. In Proceedings Model Based Diagnosis International
Workshop (DX-89), 1989.

15

