
Describing System Functions that Depend on Intermittent and

Sequential Behavior

Jonathan Bell (jpb@aber.ac.uk) and Neal Snooke (nns@aber.ac.uk)
Department of Computer Science, University of Wales Aberystwyth, Penglais,

Aberystwyth, Ceredigion SY23 3DB, United Kingdom

Abstract

Functional modeling languages have been used to de-
scribe processes that react to discrete external events
and remain in a constant state until another such event
stimulates a change in system state, and are deficient
in the area of describing several processes occurring in
a specific temporal relationship. The lack of such ex-
pressiveness means that it is difficult to apply functional
modeling effectively to complex systems where such tem-
poral interactions are key to the correct functioning of
the system. This paper presents operators to extend the
expressiveness of functional modeling for systems that
depend on intermittent behavior or on a strict sequence
of events. The effectiveness of these operators is shown
for characterizing different orderings of behavior, both in
cases where the ordering is precisely specified and where
some orderings need not be so specified. Their relevance
is shown by considering examples from the domain of
automotive systems.

Introduction

Functional modeling (Sticklen et al., 1989; Iwasaki et al.,
1993) has been in use for a number of years, both for de-
riving the behavior of a system from knowledge of its
structure and the function of the components, and for
interpreting the results of a qualitative simulation (in
which the system behavior is derived from the system’s
structure and component behavior and domain rules) in
terms of the system’s purpose. However, the expressive-
ness of functional models has been limited to cases where
the function is dependent on a continuous state, or at
least states that only change in direct response to some
change in input. For example, an electrical switch can
have either of the functions “conducting” or “isolating”,
depending on the switch position. This is sufficient to
describe systems such as a car headlamp system, where
the behavior of the system is that the lamps light in re-
sponse to them being switched on and they stay lit until
they are switched off again. The functionality of many
systems depends on responses that are more complex
than this, a simple case in point being the two flashes
of a car’s direction indicators that confirm remote lock-
ing of the car. This paper presents operators that allow
functions to be combined temporally, allowing such be-
haviors to be described.

The next section discusses the use and limitations of
functional modeling in more detail. It is followed by a
description of the operators used for describing sequen-
tial functions and a discussion of how these operators

are used for describing different orderings of subsidiary
functions. Some matters that arise from the use of these
operators are then discussed and this is followed by a
brief consideration of future work.

The uses of system function

As was suggested in the introduction, much work with
functional modeling has been concerned with using
knowledge of the function of a system’s components to
derive the behavior of the system as a whole. This func-
tional knowledge can be used to support various design
tasks. A design can be developed by refining a functional
model based on the purpose of the system until the func-
tions can be related to individual components (Iwasaki
et al., 1993). In this case, the system functions are de-
composed in terms of connections between components.
Functional modeling has also been used to support di-
agnosis (Sticklen et al., 1989) and Failure Mode Effects
Analysis (Hawkins and Woollons, 1998). In all these
cases, system function is expressed in terms of compo-
nent functions which are related to each other primarily
in terms of the connections between components, so cap-
turing the structure of the system. One drawback of this
approach, especially for failure analysis such as diagno-
sis, is that the component’s functional models also need
functions associated with their failure mode behaviors.
Rather than conducting, a wire might isolate (if it has
broken), or might conduct to the wrong place (if shorted
to power or ground), for example. This naturally com-
plicates the functional models required. The functional
decompositions are adequate for systems where the in-
dividual component functions are simple (such as a wire
conducting) but if a component has a function that de-
pends on behavior of any temporal complexity (such as
generating an intermittent output, like the flasher unit
for a car’s direction indicators), then temporal operators
are required, such as those presented in this paper.

Another use of functional knowledge is interpretation
of the results of simulation in terms of the purpose of
the system as a whole. Either a numerical or qualitative
simulation tool can be used to establish the overall be-
havior of the system being analyzed. Knowledge of the
system’s functions maps this behavior to the system’s
purpose, allowing significant changes of behavior to be
identified. This is particulary valuable for design analy-
sis tasks such as Failure Mode Effects Analysis (FMEA)
where the engineer must generate a report showing the



effects of component failures on the system as a whole
(Price, 2000). That report will be couched in terms relat-
ing to the intended purpose of the system, so instead of
noting that a failure results in no current flowing through
a car headlamp, for example, it will note that the head-
lamp fails to light, and the road will not be lit and the
legal implications. This task is a good candidate for
automation as it is extremely repetitive and it is best
carried out early in the design process, so any changes
found necessary can be made easily, and analysis can
be done whenever changes are made to the design of the
system, so the effects of such changes can be established.
While a simulation tool will help with the analysis, the
interpretation will still be the task of the engineer. Sneak
Circuit Analysis (SCA), in which the system is analyzed
to ensure there are no unexpected current flows result-
ing in unintended system outputs (Price et al., 1996;
Savakoor et al., 1993), is another design analysis task
where similar arguments apply.

If the interpretation of the simulation is to be auto-
mated (so a draft FMEA or SCA report can be produced
completely automatically) then some way of mapping
the system’s behavior to its purpose is needed. One ap-
proach to this that has been found to be useful is “func-
tional labeling” (Price, 1998). Functional labels are used
to identify the system’s outputs and to associate them
with the purpose of the system and with the required
inputs. These inputs are frequently of information (as
to the user’s intention for the system) expressed in terms
of switch positions (or whatever input interfaces the sys-
tem provides) rather than of energy. This will be the
case where the energy source (a battery for example) is
treated as part of the system or in cases where the en-
ergy source is external, but can be taken for granted,
so analyzing a mains electrical appliance need not ex-
tend to an analysis of the public electricity supply! An
alternative view of inputs and outputs in this context
is as pre- and post-conditions for correct achievement
of some system function. In many cases the result of
a function’s achievement is a goal state rather than an
output, as is the case of a car’s remote locking system
entering the locked state. It is worth noting that for
failure analyses (such as FMEA) there might be no need
for explicit representation of the input associated with a
system function. This is because the failure behavior is
compared with the behavior of the system free of failures
and this behavior can be used to find the inputs asso-
ciated with the system functions. This does, of course,
rely on the assumption that the behavior free of failures
matches the intended behavior.

This approach has been found to work well for design
analysis of many electrical systems and is in use in a com-
mercial design analysis tool that allows the automatic
generation of FMEA and SCA reports of electrical cir-
cuits in the automotive sector. It has the advantage that
the functional models are simple, as only those compo-
nents whose inputs or outputs are also inputs or outputs
to the system as a whole need explicit representation in
the functional model. The function of other components
is (implicitly) derived from their behavior. Also, the

functional model has no need of failure mode functions
as the component’s failure modes are associated with its
reusable behavioral model. The functional models are
also reusable for systems having a similar purpose, so
the functional model for a car lighting system, for exam-
ple, can be kept and reused for future systems. All that
need be changed is the mapping between the component
level functions and the state of the actual components.

While this use of functional knowledge does differ
from that of other workers in the field, there is common
ground. The modeling of function in terms of the inputs
to and outputs from a system is not inconsistent with
the definition of function as “[a device’s] effect on its en-
vironment” in (Chandrasekaran and Josephson, 1996).
Also the mapping between purpose and behavior and
input and output in functional labeling means that the
approach specifies the function as the “expected behav-
ior” consistently with the notion of function in (Iwasaki
et al., 1993).

Given that a function is considered as a relation be-
tween input and output, there are, of course, two ways
in which it can fail. The input can fail to result in the
expected output (the user throws a switch to “on” with
no effect) or the output can occur without the input (a
switch is short circuited, leading to the output continu-
ing after the switch is opened).

As the output of a system is a combination of outputs
of its components, it is necessary to decompose the sys-
tem function until the functional model can be mapped
to such outputs. This is done as described in (Snooke
and Price, 1998) and a simple such hierarchy is illus-
trated in Figure 1. This hierarchy uses the conventional

Behaviour Function Purpose

light road aheadheadlamps-lit

dipped-beam

left dipped
filament is
ACTIVE

left-dipped right-dipped

main-beam

OR

AND

Figure 1: Example hierarchical function for car head-
lamps

logical relations AND, OR, XOR and NOT to decompose
a system function from a top level mapping to purpose
down to a bottom level mapping to component output.
The use of a functional label to describe an output of a
system in terms of its purpose is an abstraction of the
system’s (intended) behaviour and one of the features
of this abstraction is a description in terms of achieve-
ment (or otherwise) of the system’s purpose. Since any
given system state can either be fulfilling some speci-
fied purpose or not doing so, using binary relations is an
appropriate abstraction for functional labeling. There-



fore one of the features of the mapping from behaviour
to purpose might be the reduction of a non binary out-
put to a binary state (achievement or non achievement
of the purpose). This might be accomplished by associ-
ating the achievement of a purpose with an acceptable
range of output values in interpretation of a numerical
model of the system concerned. The conventional logical
relations are sufficient to describe system functions that
result in a constant output that lasts until some change
to system input causes the output to change. However,
there are many examples of systems whose purpose de-
pends on behavior that results in outputs that are inter-
mittent and sequential. These relations are insufficient
for such systems, like the locking confirmation example
in the introduction. The additional operators presented
below are used to allow the functions of systems that
depend on such intermittent and sequential outputs (or
behaviors) to be described.

Describing intermittent and sequential

outputs
The existing hierarchical functional labels, using the con-
ventional logical relations, are adequate for describing
behaviors that are continue until further input triggers
a change in behavior. The required simulation can be
started by the change of input state (modeling the throw-
ing of a switch, for example) and can end once the system
settles into a steady state, when the outputs are checked
against the functional model to establish that the ex-
pected function is achieved. This means that there is
one implicit time step associated with the simulation, as
illustrated in Figure 2. This leads to the problem that

time

left_side_on

AND

right_side_on

input
event

steady
state

Figure 2: The implicit time step in modeling continuous
output

if achievement of a system function depends on some in-
termittent output that ends before the system reaches a
steady state, the output will be missed if the functional
model is only compared with the simulation once this
has been reached, as illustrated in Figure 3. What is
needed is a set of relations between outputs that shows
the necessity of checking the simulation against the func-
tional model at intermediate stages of the simulation,
allowing the ordering of intermittent and sequential out-
puts associated with a system function to be described.
This amounts to using a relation that shows an output
state following some other output state. There are two
possible cases here, where the succeeding state should
immediately follow the preceding state and where inter-
mediate states can be tolerated. The most important

time
input
event

start
intemittent

steady
state

end
intermittent

warning_flash

warning_horn

AND

Figure 3: Finding function at the end of simulation
might miss significant output

use of the first case is to specify that where the succeed-
ing state includes two or more outputs, they should start
simultaneously. To fit these two cases, two relations are
used

SEQ The succeeding state is to follow the preceding
state with no intermediate states. This is similar to
the O (in the next time step) operator in some tem-
poral logics.

L-SEQ The succeeding state follows some time after the
preceding state. This is similar to the F (some time
in the future) operator in temporal logic.

The use of a relation associated with the next time slot
is necessary to allow simultaneous changes of output to
be specified (such as the flashing of a car’s direction in-
dicators being synchronized) but it will be appreciated
that its use entails a discrete model of time, which is
more appropriate in some application domains than oth-
ers. This model of time is, of course, appropriate for the
functional labeling of systems whose simulation is mod-
eled in terms of discrete events, allowing these operators
to be used for interpretation of the simulation of systems
modeled using state charts. Problems and approaches to
this discrete model of time are discussed later. The use
of the SEQ relation is illustrated in Figure 4. It will be

time
input
event

steady
state

warning_flash

warning_horn

AND

SEQ SEQ

(NOT warning_flash AND NOT warning_horn) SEQ
(warning_flash AND warning_horn) SEQ

(NOT warning_flash AND NOT warning_horn)

Figure 4: Using SEQ to specify two intermittent outputs
occurring simultaneously

seen that the use of this relation both specifies the or-
dering of the state transitions for the outputs associated
with a function and also indicates the need to check the
outputs at intermediate stages of the simulation, before



the system settles into a steady state. In this case, if
(say) the light comes on before the horn sounds, the re-
lation will be false as the succeeding state will not be
true in the next time step.

In cases where the outputs need not start simultane-
ously, the L-SEQ relation can be used, as illustrated in
Figure 5. In this case the intermediate states are unde-

? ?

L-SEQ L-SEQ

AND

input
event time

steady
state

warning_flash

warning_horn

(NOT warning_flash AND NOT warning_horn) L-SEQ
(warning_flash AND warning_horn) L-SEQ

(NOT warning_flash AND NOT warning_horn)

Figure 5: L-SEQ specifies outputs that need not start
simultaneously

fined, so either output can start first, or if the output
components have several output states (such as a mo-
tor running slow or fast) then such outputs might also
occur before the specified output. If it is felt necessary
to specify the allowable intermediate states, this can be
done using the logical relations, so where two outputs are
required but need not start together, OR can be used to
show that either one can start before the other, but that
any other output states are to be excluded.

It is worth noting that as is the case in temporal logic,
these operators are unary, and resolve to true if the suc-
ceeding relation resolves to true; they are independent of
the preceding relation. If that relation was not satisfied
then the sequence of outputs would already have failed,
of course. This means that the state of the system at the
start of the simulation need not be specified. This initial
state might not be known when creating the functional
model, as it will typically depend on some other system
input.

These relations are adequate for describing sequences
that terminate with no further system input, so the sys-
tem will still reach a steady state. However there are
cases where a sequence of outputs will continue until
some future input causes the output sequence to stop.
The flashing of a car’s direction indicators until cancelled
is a simple example. To indicate such cases, the opera-
tors CYCLE and END-CYCLE are used. These enclose
a sequence, the END-CYCLE operator simply meaning
that the sequence should return to the point indicated
by CYCLE. This is illustrated in Figure 6. The out-
puts that form the sequence to be repeated in the cycle
can, of course, be separated either by SEQ or L-SEQ as
required. Where this operator is used then the system
will not reach a steady state in the simulation step as-
sociated with the current input, so the simulator must
recognize such cases and end the simulation once such

time

input event

SEQ

SEQ

left_front_on

AND

left_rear_on

CYCLE

END-CYCLE

NOT left_rear_on AND NOT left_front_on
CYCLE SEQ (left_rear_on AND left_front_on)

SEQ (NOT left_rear_on AND NOT left_front_on)
END-CYCLE

Figure 6: Using CYCLE to show a sequence that does
not terminate

a cycle has been unambiguously identified. Naturally it
needs to recognize the difference between, say, a warn-
ing lamp flashing a fixed number of times or it flashing
continuously for this recognition to be unambiguous.

Using the sequential operators

In this section we illustrate the use of the sequential op-
erators, both in terms of a simple case study and also for
describing different possible temporal relations between
required outputs.

A case study

To illustrate how the additional operators can be used
to describe the function of systems that otherwise would
present difficulties, consider a warning system intended
to show that either the driver or front seat passenger of a
car has not fastened their seat belt. A typical example of
such a system will warn the driver by lighting a telltale
lamp on the dashboard and by sounding a chimer several
times before stopping the chiming. It will be appreciated
that if the simulation is only interpreted in terms of the
system’s function once a steady state has been reached,
this chiming will be lost as the chimer will be silent.
Therefore intermediate checks of the system state vis
a vis the functional description are needed. Using the
proposed operators, the output (post-condition) of the
“warning given” function can be described, as

‘‘lamp lit’’ AND
(‘‘chimer on’’ SEQ ‘‘chimer off’’
SEQ ‘‘chimer on’’ SEQ ‘‘chimer off’’)

assuming two sounds of the chimer are expected.
The use of SEQ shows the intermediate stages of the

simulation that must be checked against the functional
description, allowing failure of the chimes to be detected
as failure to correctly achieve the function. The alterna-
tive approach would be to add a specific state to the be-
havioural model, but this assumes that the behavioural
model is presented in some form that allows this (such



as a state chart) and also adds unnecessary complica-
tion to that model. A “chiming complete” state could
be added, but not only is this state behaviorally identi-
cal to the chimer “off state”, it is also necessary to add
transitions between these two states so that any future
achievement of the “warning given” function is correctly
detected. Naturally, if the chimer were to fail when the
system was already in the “chiming complete” state, this
will be missed. The use of the additional operators in the
functional description allows greater separation between
the different models used in analysis.

The sequential operators and temporal
relations

These temporal relations can be combined with the ex-
isting hierarchical functional relations to allow various
orderings of required outputs to be described. There is
a set of thirteen possible orderings of two intermittent
states in (Allen, 1984), though twelve of these form six
identical pairs. The terms used for the inverse relation-
ships in these pairs are from (Gerevini and Schubert,
1995). These relationships derive from Allen’s interval
based ontology of time. Any of these can be represented
using the relations proposed, as illustrated in Figure 7.
It should be noted that the use of NOT is only safe where
the state of an output is binary (such as on or off). Some
of the labels used in (Allen, 1984) imply some notion of
causality which need not be the case. The starting of
output y after x, say, need not imply that the starting
of y is what causes x to stop. The descriptions using
the temporal operators are not intended to express any
notion of causality, they are simply concerned with or-
dering of the output states. The outputs all share the
same triggering input. Where functional labeling is used
for interpretation of simulation of some system, there is
no need for any expression of causality in the functional
language, knowledge of causality (if required) being de-
rived from the simulation.

It is possible that the ordering of all the transitions
concerned with the starting or stopping of intermittent
outputs need not be specified, as it is not felt to be
important. If a warning lamp blinks on and off and a
chimer sounds, it might be unimportant which happens
first. The L-SEQ relation can be used in these cases,
as illustrated in Figure 8. L-SEQ is used in all these
cases except the first, to show that the expected change
to output can take place over more than one transition.
The first case differs. Here two intermittent outputs are
to occur between the triggering input and the system
reaching a steady state but their ordering relative to
each other is unspecified. As the transitions indicated
by the SEQ relation are local to that sequence, this case
can be described by combining two such sequences us-
ing the AND relation and there is no ordering implicit
between the transitions in the two sequences. This use
of AND allows branching of time to be represented, as
in such temporal logics as CTL, where it is not the case
that some event must always be either before, after or
simultaneous with some other event.

It will be seen that in cases where an output is in one

of two possible states and there is only one change to the
output associated with a sequential relation, then SEQ
and L-SEQ are equivalent, but this is not the case where
there is some other possible output state that might oc-
cur between the two specified states.

While for the sake of simplicity the sequences in the ex-
amples have been kept short, it will be appreciated that
the required sequences can be of arbitrary length. The
example of a system function given in the introduction,
the direction indicators all flashing twice simultaneously
to confirm remote locking can readily be described us-
ing repetitions of the SEQ operator while the outputs of
each direction indicator are related using AND.

Discussion

As noted earlier, the use of SEQ (true if succeeding state
is true in the next time step) depends on a discrete model
of time. This leads to some questions about how time
might be represented and also about the presence of in-
termediate states. As we are concerned with the inputs
to and outputs from the system, any intermediate inter-
nal states can be ignored for the purpose of determin-
ing function, we can restrict our consideration only to
those states associated with a change of system output.
For example, a lighting system might use a relay whose
behavior will include a state in which there is current
flowing through the coil (following the throwing of the
switch) but in which the relay’s switch remains open, so
there is a delay in the switching on of the lamps. How-
ever, this intermediate change of system state (in which
current flows through the relay coil but not the lamps)
will not result in any change to the system’s output, so
can be ignored for assessing the achievement of a system
function. It will be appreciated that where two lamps
are switched by the same relay, their lighting up can be
considered simultaneous (provided there is no difference
in their connections resulting in a delay to one or the
other). This is appropriate if the behavior of the system
can be represented in terms of states and transitions,
less so if a continuous model of time is used (as might
be the case if the simulation is numerical as opposed to
qualitative).

In the case of mechanical systems where there is an in-
evitable delay between the effort causing an action and
the action (because of inertia in the system) there are
alternative possibilities. One is that intermediate states
are ignored, so a rear window wiper can be modelled as
stopped and wiping, ignoring the fact that the system
will not reach the working wiping speed instantaneously.
If this approach is taken, then operational states can
conveniently be modelled using a discrete approxima-
tion for modeling time and SEQ can be used (perhaps
to describe intermittent wipe). In many cases, this ap-
proximation will not result in the loss of any aspect of the
behavioral model that relates directly to purpose, so is
acceptable. Alternatively, of course, L-SEQ can be used
to make explicit the fact that such intermediate states as
acceleration or the filling of a tank can be ignored. For
example, L-SEQ can be used to describe the situation
where opening an inlet valve will eventually result in a



y overlapped-by x

x before y

y after x

x meets y

y met-by x

x overlaps y

x during y

y contains x

x starts y

y started-by x

x finishes y

y finished-by x

x equal y

Relation Meaning

x

x

x

x

x

x

x

y

y

y

y

y

y

y

(NOT x AND NOT y) SEQ (x AND NOT y) SEQ (NOT x AND NOT y)
SEQ (NOT x AND y) SEQ (NOT x AND NOT y)

(NOT x AND NOT y) SEQ (x AND NOT y) SEQ (NOT x AND y)
SEQ (NOT x AND NOT y)

(NOT x AND NOT y) SEQ (x AND NOT y) SEQ (x AND y)
SEQ (NOT x AND y) SEQ (NOT x AND NOT y)

(NOT x AND NOT y) SEQ (NOT x AND y) SEQ (x AND y)
SEQ (NOT x AND y) SEQ (NOT x AND NOT y)

(NOT x AND NOT y) SEQ (x AND y) SEQ (NOT x AND y)
SEQ (NOT x AND NOT y)

(NOT x AND NOT y) SEQ (NOT x AND y) SEQ (x AND y)
SEQ (NOT x AND NOT y)

(NOT x AND NOT y) SEQ (x AND y) SEQ (NOT x AND NOT y)

Description

Figure 7: Using SEQ to describe different temporal relations

reservoir being filled. This means that the use of L-SEQ
allows intermediate states that might occur during the
transition between different non-binary outputs to be ig-
nored in the functional model. It therefore needs careful
use in cases where outputs are not binary as any unex-
pected outputs will not be noted in the text of the design
analysis report. For example, where a system is driven
by a motor that might be running slow or fast (such as a
wash-wipe system) the use of L-SEQ means that an in-
termediate period at which the system is running at the
unintended speed will be missed. It is worth noting that
if function is regarded as a property of the system, the
continuously variable nature of outputs of many com-
ponents can be ignored. In the wash-wipe system, the
motor is itself capable of running in either direction at
any speed between stopped and its maximum, but the
system requires (and constrains) the motor to run in one
direction at one of two speeds. As the functional model
is concerned with the sweeping of the windscreen wipers,
not the output of the motor, this abstraction of its be-
haviour is adequate. Where a numerical simulation is
used, the various output levels (such as motor speeds)
can be mapped to the system outputs as a range of ac-
ceptable values.

Future work

While the extensions to the functional modeling lan-
guage proposed herein allow the modeling of intermit-
tent and sequential outputs, there are other aspects of
modeling function that might be necessary and which the
present work moves towards. One such aspect is map-
ping these ordering relations to a continuous modeling
of time, to model cases where a state transition model
is inappropriate. A related aspect of temporal model-
ing with regard to function is capturing the idea that
a system function is achieved, but in an untimely man-

ner (typically later than expected). Some work has been
done on this, especially as it relates to the present work,
modeling these intermittent behaviors such that the tim-
ing of the sequence of transition concerned is specified.
The timing of user inputs might also affect the expected
behavior of the system. One example that has come to
light is the (intended) temporary disabling of a seat belt
reminder system by the driver buckling the seat belt and
unbuckling it within a specified time.

It is also the case that a system might incorporate a
telltale function that informs the user of the state of the
system. Such a function, while it contributes to the func-
tionality of the system as a whole, cannot be modelled
as part of the hierarchy for the system’s ‘core’ function.
For example, the blue dashboard light (showing main
beam is selected) does not contribute to the achieve-
ment of the headlamp function’s purpose of lighting the
road ahead, though it shares the input setting for that
function. Work is progressing with modeling this class
of functional dependency.

Conclusion

The extensions to the functional modeling language pro-
posed herein allow the modeling of intermittent and se-
quential behaviors, whether they form a sequence that
ends with the system in a steady state or the system en-
ters an indefinite cycle. This extension to the language
used for defining functional relations appears to be ca-
pable of handling such behaviors of arbitrary complex-
ity. This is done in a way that maintains compatibility
with the existing relations, allowing existing functional
models to continue in use and avoiding any need for ad-
ditional complexity in the description of simple systems
whose functional model can be expressed in terms of the
logical operators. It also appears to provide a basis for
further extending the language in the ways suggested in



Relation Meaning

x

x

x

x

x

x

x

y

y

y

y

y

y

y

?

? ?

?

?

?

?

?

x unordered-with y

x starts-with y

x ends-with y

x starts-before y

x ends-before y

x starts-before y
and x ends-before y

x must-overlap y

both x and y must occur at
some stage in the simulation
step

There must be an overlap
between x and y but either
can start or end first

both x and y must start
together but the ordering of
the ends is unspecified

both x and y must end
together but the ordering of
the starts is unspecified

x must start before y but the
ordering of the ends is
unspecified

x must end before y but the
ordering of the starts is
unspecified

x must start before y starts
and end before y ends but can
end before or after y starts

Interpretation

(NOT x AND NOT y) SEQ (x AND
NOT y) SEQ (x AND y) L-SEQ
(NOT x AND NOT y)

(NOT x SEQ x SEQ NOT x) AND
(NOT y SEQ y SEQ NOT y)

(NOT x AND NOT y)
L-SEQ (x AND y)
L-SEQ (NOT x AND NOT y)

(NOT x AND NOT y)
SEQ (x AND y)
L-SEQ (NOT x AND NOT y)

(NOT x AND NOT y)
L-SEQ (x AND y)
SEQ (NOT x AND NOT y)

(NOT x AND NOT y) L-SEQ (x
AND y) SEQ (NOT x AND y) SEQ
(NOT x AND NOT y)

(NOT x AND NOT y) SEQ (x AND
NOT y) L-SEQ (NOT x AND y) SEQ
(NOT x AND NOT y)

Description

Figure 8: Using L-SEQ to describe sequences where ordering is unimportant

the section on future work.

References
Allen, J. F. (1984). Towards a general theory of action

and time. Artifial Intelligence, 23(2):123–154.

Chandrasekaran, B. and Josephson, J. R. (1996). Rep-
resenting function as effect: Assigning functions to
objects in context and out. In Proceedings of Amer-
ican Association for Artificial Intelligence.

Gerevini, A. and Schubert, L. (1995). Efficient algo-
rithms for qualitative reasoning about time. Artifi-
cial Intelligence, 74(2):207–248.

Hawkins, P. G. and Woollons, D. J. (1998). Failure
modes and effects analysis of complex engineering
systems using functional models. Artificial Intelli-
gence in Engineering, 12(4):375–397.

Iwasaki, Y., Fikes, R., Vescovi, M., and Chandrasekaran,
B. (1993). How things are intended to work: Cap-
turing functional knowledge in device design. In
Proceedings of 13th International Joint Conference
on Artificial Intelligence, pages 1516–1522.

Price, C. J. (1998). Function-directed electrical de-
sign analysis. Artificial Intelligence in Engineering,
12(4):445–456.

Price, C. J. (2000). AutoSteve: automated electrical
design analysis. In Proceedings ECAI-2000, pages
721–725.

Price, C. J., Snooke, N., and Landry, J. (1996). Au-
tomated sneak identification. Engineering Applica-
tions of Artificial Intelligence, 9(4):423–427.

Savakoor, D. S., Bowles, J. B., and Bonnell, R. D. (1993).
Combining sneak circuit analysis and failure modes
and effects analysis. In Proceedings Annual Reliabil-
ity and Maintainability Symposium, pages 199–205.

Snooke, N. A. and Price, C. J. (1998). Hierarchical func-
tional reasoning. Knowledge-Based Systems, 11(5–
6):301–309.

Sticklen, J., Goel, A., Chandrasekaran, B., and Bond,
W. E. (1989). Functional reasoning for design and
diagnosis. In Proceedings Model Based Diagnosis
International Workshop (DX-89).


