Unified Modeling Language

Author: Jon Bell

Date: 3/12/01

Ref: SD/BCG/LAN/OTH/03

1. Introduction

These notes briefly describe the Unified Modeling Language (UML) and discuss its suitability for the behavioural simulation of network and software components in automotive electrical systems.

The intention is that the material covered here will be used to produce the report on simulation languages and tools that is deliverable at the end of SoftFMEA workpackage 1. The aim of the document is to enable comparisons between UML and the other languages considered in workpackage 1 to be drawn, regarding their usefulness for SoftFMEA. This document is therefore a companion to Notes on SDL [1], VHDL and VHDL-AMS [2], State transition diagrams [3] and Other simulation languages [4].

The main source consulted was Using UML [5]. Telelogic, who market ObjectGeode, an SDL tool, are interested in combining UML and SDL. They have produced a paper on this [6].

2. Introduction to UML

UML was derived from a combination of object oriented modelling languages. It lacks formal semantics, so cannot be used (alone) to generate code or to build executable models, but various tools exist, with their own proprietary interpretations of UML to support implementation.

Its informality makes it more useful for requirements analysis, so is useful in the early stages of development of an application. This informality seems to make it a less favourable choice than, say, SDL for simulation of components, but one of the proprietary interpretations could be used.

The language’s scope is broad, covering

· Logical architecture (class diagrams, state charts, interaction diagrams)

· Requirements structure (use case diagrams)

· Physical architecture (component and deployment diagrams)

· Organisation workflow (activity diagrams).

It seems likely that much of this scope will be unnecessary in SoftFMEA. Separate sections will discuss the more interesting diagrams (state charts, interaction diagrams and activity diagrams).

3. State charts

UML uses hierarchical state charts to describe the behaviour of a class, such as how it responds to messages passed from other classes. As state charts are discussed in [3], here I shall confine discussion to specific UML aspects (such as extensions) of state charts.

It is suggested that a class should have a simple state chart, and if the state chart is complex, another design might be preferable. This is not really an option for us, as we shall presumably use a class to model a component. This may suggest that the flexibility of UML is not something we can take advantage of. Of course a component could conceivably be split into several classes, but is this complication in modelling helpful?

Actions can be associated with events (transitions) or with entry to or exit from states.

Hierarchical state machines are supported by compound states in which there is a nested state machine. The internal state machine must have entry and exit (termination) markers. Concurrent internal states are also supported, the external state being identified with a dashed line dividing it into the concurrent groups, like a Statemate “and” state.

UML supports time events, so that an event can be fired a given interval after entering a state, for example.

4. Interaction diagrams

There are two types of interaction diagram in UML; collaboration diagram, which shows which classes collaborate in performing an activity and sequence diagram, which shows the sequence of messages between the classes that perform an activity. The sequence diagram is a fairly close equivalent of the message sequence chart (MSC) associated with SDL. There is clearly an association between messages in an interaction diagram and state transitions in the related state charts, but Using UML [5] does not make clear how formally this is defined.

Sequence diagrams can be used to model timing, and can have constraints added to show an acceptable time limit.

Of the two types of interaction diagram, sequence diagrams look more interesting to us - collaboration diagrams seem to be most useful in adding a step in working between class diagrams (and use case diagrams) and either sequence diagrams or classes’ state charts.

5. Activity diagrams

Diagrams show how (business level) activities are coordinated. An activity diagram could show how an operation is to be implemented. They are most useful when an operation must achieve several different things and it is necessary to model the dependencies between them. This seems to be of limited use in SoftFMEA.

While they look similar (at first glance) to an SDL process diagram, the transitions are between activities, not states. The diagrams’ role appears to be a step in mapping from a use case to the state charts of the classes involved, so is quite different from a process diagram’s role. Activities can be likened to states that are left when the activity is done, so the transitions are not in response to outside events. The transitions simply show the flow between activities. Apart from activities and transitions, other elements are decisions, an alternative to guards on the transitions; start and stop markers, like those used in state charts and synchronisation bars. Synchronisation bars mark places where several (concurrent) activities can either start from or must end at. When concurrent activities join, each activity must be completed before the transition leaving the bar can be taken.

6. Modelling time

As noted in the relevant sections above, timed events are supported in state charts, and timing is supported in sequence diagrams. However, the support for modelling time does not appear to offer any advantages over SDL or Statemate.

7. UML and SDL

Utilizing UML in SDL-based development [6] examines how the two languages can be used together. As these languages are both candidates for use in SoftFMEA, it seems worthwhile discussing the possibility of combining the two in the light of the paper.

The paper notes that the scope of UML is broader than that of SDL, but suggests that this breadth of scope is most useful for requirements analysis. This seems relatively uninteresting to SoftFMEA, where we are mostly concerned with modelling the logical architecture of a component or system. SDL does provide the formal semantics for the logical architecture and behaviour of a system, so it could be used to underpin those aspects of UML, in the way that proprietary tools do. It is probably true that the only advantage of using SDL to underpin UML would be to hide SDL syntax from the user, but this might well impose limitations on the use of UML, in terms of, say, restricting the meaning of a “message” and of SDL by hindering the description of the behaviour associated with a transition. This needs more investigation (but perhaps not by us!). Reed, in [7], states that there “seems to be no reason why SDL cannot be considered as defining the state machines within UML”. If this does work, it would allow a more compact notation to be used instead of SDL process diagrams. This would be especially advantageous when modelling several alternative behaviours, such as failure mode ones.

In fact, this seems not to be the approach taken in the paper where the authors argue the advantages of combining UML and SDL diagrams. The paper gives examples where UML diagrams are used to add to the information conveyed by the SDL diagrams. It is perhaps unfortunate that the paper does not seem to examine how UML might be used for requirements analysis, and then SDL is used to formally specify the logical architecture and system behaviour as this seems to me the most interesting combination of the languages. Although not of interest to SoftFMEA, this might make an interesting investigation.

8. Conclusion

UML’s main strength seems to be in its support for the development process. This seems to be of limited interest to SoftFMEA where networks are concerned, but might it be more valuable when considering software based components? If our interest is confined to a system’s logical architecture and behaviour we might only use the state and interaction diagrams, where there are plenty of alternatives. UML’s usefulness seems therefore to depend on whether it fits in well with an existing development process.

UML does, of course, support object orientation. It remains unclear to me how valuable this will be.

Its main weakness, from our point of view, is its lack of formality. Clearly to build an executable model we need a formal language. Therefore we can presumably only use UML if we underpin it with some formal semantics, such as those provided by a proprietary tool, or possibly SDL. This leaves the question of why we would want to do this. There are two possible reasons. One is that UML is used in a development process and we wish to use it for our stage of this process for consistency and to avoid the user translating work into a new language. The other related reason is simply that if users are familiar with UML it might be worth keeping it, as a “front end” to a formal language.

In summary, UML’s main role seems to be in requirements analysis and the (early stages of) design of an object-oriented system, which is not what we want. Its only use might be as a front end to a more formal language, such as SDL. This might enable a more compact notation (state charts rather than process diagrams) to be used.

9. References

[1] Bell, J: Notes on SDL, SoftFMEA document ref. SD/BCG/LAN/SDL/01

[2] Bell, J: VHDL and VHDL-AMS, SoftFMEA document ref. SD/BCG/LAN/OTH/01

[3] Bell, J: State transition diagrams, SoftFMEA document ref. SD/BCG/LAN/SC/01

[4] Bell, J: Other simulation languages, SoftFMEA document ref. SD/BCG/LAN/OTH/02

[5] Pooley, R and Stevens, P: Using UML: Software Engineering with Objects and Components, pub Addison Wesley Longman, 1999

[6] Andersson, M, Ek, A and Landin, N: “Utilizing UML in SDL-based development” in Computer Networks vol. 35 issue 6, May 2001, pp613-625.

[7] Reed, R: “Notes on SDL-2000 for the new millennium” in Computer Networks Vol. 35, issue 6, May 2001, pp709-720

04/12/01

4 of 4

