Languages for simulation of network and software components

Author:

Jon Bell

Date:

23/1/02

Document ref.
SD/TR/01

1. Introduction

This report discusses alternative languages for extending the existing AQQA tool to allow it to be used to simulate electrical systems that make use of a network (e.g. CANbus) or incorporate significant software components.

SoftFMEA Workpackage 1 specifies delivery of a report detailing alternative simulation languages to be used for modelling these new features of systems and this report does this. However its scope has been broadened to include discussion of the alternative approaches which might be taken to simulating such systems. It concludes with a discussion of the solutions that are proposed for implementation.

The report assumes some familiarity with AQQA and with state machine representations, but does not assume familiarity with other languages discussed. This report is best read in conjunction with the companion report, Systems with telematic components, that discusses possible case studies, as some of the issues raised in this report are illustrated by the case studies.

The report starts with a brief discussion of the problem, and of other problems that arise from the possible nature of systems we might wish to simulate. This section is followed by an overview of possible approaches to extending AQQA to allow simulation of such systems. The alternative languages are discussed in the following section. This section will briefly introduce each language in turn and will discuss its advantages and disadvantages for the purpose of the present project. After the discussion of the languages a conclusion will introduce a proposed approach for the project and draw the threads of the report together and discuss future work.

2. The problem

This section discusses why it is necessary to use different languages and modelling approaches for simulating network and software components, and also discusses some further problems arising from features that might be found in systems that use network or software components.

2.1. The need for new modelling languages

At present, AQQA is capable of simulating the behaviour of electrical systems, either qualitatively or quantitatively. This simulation is done at a structural level; qualitatively by modelling the layout of the system and finding current flows through the circuit or quantitatively by using Saber to construct a mathematical model of the electrical system.

This is not a suitable means of modelling a network, and is impossible for modelling software. The network could be modelled electrically (assuming the transmission medium is wire not optical fibre!) but this implies running the simulation for each bit in the message, which would at best be extremely slow. An electrical model is clearly unsuitable for modelling a software component. What is therefore needed is some means of modelling the behaviour of such components, at some appropriate level of detail. It is worth noting that this is already done in the qualitative simulator, using either dependency expressions or state charts to describe component behaviours. Various languages exist that might be used for modelling behaviours of network or software components. These are discussed in Section 4 of this report.

2.2. Emerging problems

Consideration of case studies has led to the identification of two classes of system whose behaviour presents additional challenges. These are real time systems, where delay in achieving a function is intolerable, and “closed loop” systems that respond to feedback, whose behaviour changes with time. It is, of course, quite possible for a system to fall into both these categories. These are discussed in more detail in Systems with telematic components.

The current tool simulates the system at a point in time, and so modelling delayed messages requires some means of enhancing the functional modelling to allow functions to be related to inputs. This might be done by simply extending the functional modelling so that if the required function is only achieved after a delay this is shown on the FMEA, with an output like “Expected function headlamps_dipped achieved late”. Clearly, use of a sophisticated modelling tool with a quantitative notion of time would allow deadlines and simulated delays to be compared, and noted.

Where a system whose behaviour changes over time (such as the heater example in Systems with telematic components) is to be modelled, some way of modelling the system’s reaction to a sensor’s message is needed. This will generally mean choosing one from a set of alternative behaviours. For example, if the user of the heater system example alters the temperature setting to lower the desired temperature this might reduce the desired temperature to below the current temperature rather than being above it, so the heater will be turned off. Alternatively the message might cause no change in the heater’s state. This would happen if the heater was already off and lower temperature was set. This involves some envisionment of possible system states after the input change. This requires some way of capturing the state of the system’s environment (such as the current temperature) and modelling the idea that the system’s behaviour changes the environment. For example, when the heater is on the environment gets warmer, if the heater was on, but is now off, the environment cools. This can, of course, be modelled qualitatively, using the desired temperature (in this example) as the necessary landmark value.

3. Approaches to simulation of network components

Before discussing the alternative modelling languages, it seems useful to briefly discuss the alternative methods we might use so as to place the languages into context.

There are three questions to answer in deciding on a method to use. The first is “Are we going to model the whole system (i.e. both electrical and network components) in the same way?” If the answer to that question is no, it can be followed by asking “Are we going to use a generally applicable language for modelling network components, or a specialised one?”. This relates closely to the third question “Should we allow different languages to be used in different cases?” such as modelling CAN components using CANoe (a specialised tool) while modelling software components in, say, StateMate. Each of these questions will be discussed in turn. A related question is “what level of abstraction should we use for modelling different parts of a system?”. As suggested above, it might be possible (though perhaps not feasible!) to model a network using an electrical simulator, but this is not an appropriate level of abstraction.

We therefore need to decide on an appropriate level of abstraction for modelling network and software parts of a system. Two possible alternatives are to model these components in terms of behaviour or function. Of these two alternatives, behaviour seems more appropriate, for two reasons. The first reason is that this is a suitable level of abstraction for modelling the faulty behaviour of a component, necessary for FMEA. The other reason is that behaviour (as distinct from function) is less dependent on context, so a behavioural model can be reused in different systems. The system provides the context and so allows the component’s behaviour to be related to the system function.

3.1. Mixing languages

The idea of modelling both electrical and network (or software) components in the same way has the benefit of simplicity, there is no need to mix models. However, from the point of view of the present project, which is based on the extension of existing tools, it has the disadvantage that these tools will no longer be useful. This means throwing away existing (tried and tested) work. It also means modelling the whole system at the same level of abstraction.

There are advantages in the alternative mixed model approach, in which different tools are used for simulating the electrical and network parts of a system. The most important of these is flexibility. The obvious example is the use of both qualitative and quantitative electrical simulators. This suggests that this approach better supports modelling of systems at different levels of granularity at different stages in the design lifecycle.

Another advantage of a mixed model approach, which may be of more theoretical than practical interest, is the increased expressiveness of the model. Modelling the whole subsystem in SDL (a state machine language) means that electrical and network signals will be modelled in the same way.

The balance of advantages, certainly in the case of this project, suggests that we should find ways of mixing models, allowing the existing electrical simulators to be used.

3.2. Using a generic or specialised language

Clearly a specialised language (such as CANoe for modelling CANbus systems) will allow a specific network protocol (for example) to be modelled in greater detail than can easily be done with a more general language. However, there are disadvantages.

The obvious one is the likely need for several such languages. Where a vehicle has different networks, each using a different protocol, then it is likely that a different tool will be needed for each network. Further complications are added at bridges between the networks. It will also be the case that software components’ behaviour will need to be modelled using another different (and possibly generic) language.

The other disadvantage is that to get the benefit from the detailed modelling that a specialised language allows, the specification of the network needs to be known in detail. This might not be the case early in the design lifecycle. A related question is the fact that different models of a car will typically have different network specifications (adding accessory systems) so the full benefit of using a specialist tool will only be realised if separate system analyses are carried out for each model, even though system behaviour will vary little.

It is tempting to suggest a relationship between the language used for modelling the network component and that used for the electrical system, so that a simple model, using a generic tool might be used with the qualitative simulator and a specialised tool used with the numerical simulator. There is no reason why this should be the case, however. This leads on to the third question.

3.3. Using different languages in different cases

The foregoing suggests that there is a strong case to be made for devising a method that might allow different languages to be used, both for different parts of the system and at different stages in the design lifecycle.

The main argument against this flexible approach is that deciding on a specific language can be expected to simplify the development of the system. However, it is suggested that the advantage of a more flexible approach more than justifies the additional complication.

4. Alternative languages for modelling network and software components

Several languages have been identified as possible alternatives. These include a state machine language (such as Statemate’s language), the International Telecommunications Union Specification and Design Language (SDL), the Unified Modeling Language (UML) and VHDL. Investigations uncovered other possibilities, which do not appear to offer any advantages, but which are included, briefly, for completeness.

This section begins with a brief discussion of the requirements for a suitable language before discussing each candidate language in turn. These discussions will, of course, be in terms of the language’s suitability for the project. Candidate languages will only be introduced briefly here, there are more detailed documents dealing with most of the languages, copies of which can be made available. These will be referred to in the relevant section.

4.1. Some requirements of a simulation language

The first observation to be made here is that as the language is to be used to build models of component (or subsystem) behaviours that are to be simulated, so the models must be executable. Any language to be used must therefore be semantically well defined, so each statement’s meaning is unambiguous.

In modelling networks, some method is needed to allow component models to pass messages between them, modelling the network messages. This is a new development, as in AQQA all communications between components are modelled electrically.

There is a trade off between the detail with which a system can be modelled and the complexity of the model, so a balance needs to be struck between these conflicting factors. It is possible that a network model could be built for a vehicle and this model re-used for simulation of different electrical systems, so complexity might, at least in some cases, be less of a drawback than might be felt to be the case. However, it is likely that the opportunities for reuse of models of software (as opposed to network) components will be limited. This is especially likely where detailed models capture the subtleties of behaviour of specific components. This might be argued to further strengthen the case for allowing different languages to be used, capturing behaviour in greater detail later in the design lifecycle.

A further case for simplicity of model building is made by the possible need to use the language to model both correct and faulty component (or subsystem) behaviours, necessitating the building of several models.

Having introduced some requirements of the language, each language will now be discussed in turn.

4.2. State chart languages

Two state chart languages have been investigated, Statemate and the AQQA State Builder tool. They have enough in common for them to be considered together. There is a more detailed discussion of the languages in SoftFMEA document State transition diagrams. It is worth pointing out that SDL and UML also use versions of state charts. These languages are considered in subsequent sections.

A state chart describes an object’s behaviour in terms of states, with transitions between these states being caused by events (such as incoming signals). States can be arranged hierarchically, so that to be in a state is to be in one or other of its subsidiary states, or states can be placed in concurrency groups to represent parallel behaviours, so to be in the top level state is to be in a state in each concurrency group.

Of these two languages, Statemate is the more fully developed. It has three “views” of a system: -

· Functional view – what the system does, modelled using an Activity chart.

· Behavioural view – when (and how?) the system does it, modelled using a State chart.

· Structural view – what the system consists of, modelled using a Module chart.

These models are joined by non graphical material held in a “data dictionary”.

As befits a tool intended for modelling individual components, State Builder only has the behavioural view.

Statemate activity charts define signal paths, by which state machines can pass signals. This provides a possible mechanism for modelling network messages. This allows passing of data, so is more flexible than the passing of events that State Builder supports.

State Builder has no such facility for modelling data flows. It does have the ability to send an event from one part of a state machine to another (i.e. a state in a different concurrency group). This raises the possibility of modelling the network subsystem as one state machine, modelling each component as the top level state in a concurrency group. This has been tried for the simple front lamps system illustrated in Systems with telematic components and has been found to work, but the models are necessarily simple. This is not an ideal model of message passing. It cannot send a value from a sensor, which might or might not cause a change in behaviour of the system. Adding such message passing would be possible, of course. One interesting side effect of this approach is the relative ease with which it models broadcast signals. As the signal passing facilities in Statemate and SDL use predefined paths, each signal has a known destination, which is not the case in the protocols used in the automotive industry, where messages are broadcast and identified by sender, not intended recipients.

Both tools have fairly similar facilities for modelling time delays in event firing, which allow an event to be used to model cases where a message is received after a deadline. State Builder has only a qualitative notion of time, however, limiting its usefulness.

In both cases, faulty behaviour needs modelling in a separate state chart. AQQA has a mechanism to support this, of course. Some way of swapping component state charts in a Statemate model would be needed.

Both tools have the benefit of familiarity, and State Builder has the advantage of fitting seamlessly into the existing tool.

4.3. SDL

SDL, the Specification and Description Language, was developed by the ITU for the modelling of telecommunications systems, which suggests the language should be applicable for description of network systems. There is a fuller description of the language in SoftFMEA document Notes on SDL.

SDL is intended for modelling discrete reactive systems. This means it is better suited for modelling systems whose behaviour changes in response to discrete events. This is the case for network systems, of course, where a message is such an event. This applies to all state based languages, of course. It models systems hierarchically, by using a block diagram to model the system. This diagram can be subdivided into lower-level blocks or into individual processes. For our purposes it would be reasonable to equate a process diagram to a component in the system, though no such relationship is assumed.

Behaviour of a process is described in a process diagram, which uses an extension to a finite state machine. The diagram is not like a Statemate state chart, however. Instead each behaviour associated with a process is described in a flow chart like graph that may pass through several states. This allows a behaviour to be modelled in more detail than a state chart, but leads to a complex process diagram.

A possible approach to faulty behaviour would be to add faulty states to a process diagram, adding extra behaviour charts to suit, or simply add behaviour charts in which faults mean behaviour differs (such as expected signals not being received). This would avoid the necessity of swapping process diagrams into and out of the model, but would lead to complex diagrams.

The block diagrams are used to specify signal routes between processes and between the system and its environment. This has the same drawback as the Statemate signal path facility, in that signal routes need to be known, and this appears not to model broadcast messages well. It is worth noting that at a system level, signal routes will be known, so this may not be a severe drawback.

SDL supports the idea of modelling passage of time. A timer can be set with an expiration time. This provides a mechanism for dealing with late arrival of message, the timer being set to expire on reaching a deadline.

4.4. UML

UML, the Unified Modeling Language, was developed for description of object-oriented systems. It uses a class diagram to divide a system into classes (components). Hierarchical state charts are used to describe the behaviour of a class. There are two types of diagram available to model interactions between components. The more useful to us is the sequence diagram, which shows what messages are passed between classes as part of an operation. There is a fuller description of UML in SoftFMEA document Unified Modeling Language.

There are various other diagrams, which seem less of interest for the project. These other diagrams are used for design activities such as requirements definition. As the language was intended to aid communication between software developers and customers, formal semantics were not felt necessary, though implementations of UML (tools) will add formally defined semantics to allow simulation of system models. As the UML language is not itself formally defined, the language is unsuitable for creating executable models, without relying on a specific tool, or without adding those formal definitions we need.

Being intended for describing object-oriented software systems, the messages passed are not intended to model network signals, but are intended to model method invocation between (software) classes in such a system. They therefore seem less appropriate for the project than the signals supported by Statemate or SDL, though they could probably be used.

The state diagrams are similar to those in Statemate, supporting hierarchical decomposition of states and concurrency.

It is worth pointing out that Telelogic, a vendor of an SDL tool, have looked into combining SDL and UML. They propose using SDL’s formally defined process diagrams to model behaviour. As this is the part of UML of most use to the project, this supports the idea that SDL is of more interest.

4.5. VHDL

This language was intended for description of hardware systems, the name being an acronym for Very High Speed Integrated Circuit (VHSIC) Hardware Description Language. There is a more detailed description in SoftFMEA document VHDL and VHDL-AMS. In its original form, the language is suitable for modelling discrete systems, but there is an extension, VHDL-AMS, that allows modelling of systems with continuous elements. AMS stands for Analogue and Mixed-Signal.

It includes two views of a component, an external view and one or more internal views. These internal views can describe it in terms of structure or behaviour. The language uses an Ada-like syntax.

As a hardware description language it could be used to model individual components (such as CAN terminals), especially those whose functionality is implemented in hardware. It is not clear how communication between components (network messages) would de modelled. There appears to be no equivalent of the specific mechanism in SDL, for example. Components for modelling in VHDL will, presumably be bought in, so arguably the system designers will not need to model the components themselves in detail (though perhaps the suppliers could make VHDL models available).

It is a more complex language than the state based ones so supports the building of more sophisticated models. The building of these models is likely to be laborious, and it might well be the case that if such detailed models are needed, they will be more easily built using a specialist tool, such as CANoe. VHDL can be used at various levels of abstraction, but there seems little point in using VHDL to make models more easily built using state charts.

4.6. Specialised languages and tools

The obvious example of such a tool is CANoe, a tool for simulation of CAN systems, but similar tools exist for other automotive protocols. These can be expected to allow more detailed modelling of a network than the state chart tools discussed above, at the expense of greater complexity in the model building process. Their use is arguably only appropriate in cases where the network can be completely specified. Even where such a language is used, we will presumably still need to support a more generic language for modelling of software components.

The main use of such tools is likely to be in the case that a model of a vehicle’s network systems can be reused for simulation of each electrical system.

In the interests of brevity, it is not proposed to describe these in detail here. Their advantages and disadvantages are discussed in Section 3.2 above. More work is needed in investigation of these languages.

4.7. Other languages

In the course of investigation, other possible candidate languages have come to light. It is not felt that they offer any advantages over the languages discussed in the preceding sections, but three are discussed briefly, for completeness.

4.7.1. Estelle

The name Estelle is derived from an acronym for Extended Finite State Machine Language. As the name suggests it uses an extended state transition model. It uses Pascal to describe actions on variables. It is an ISO standard, and is a formal description technique, so is suitable for building executable models.

The only possible advantage seems to be the use of Pascal, increasing the power of its handling of variables. It is unclear whether this will be of benefit compared to other state machine languages.

4.7.2. LOTOS

LOTOS is an acronym for Language Of Temporal Ordering Specification. It is a formally defined language with a formally defined mathematical foundation for describing reactive, concurrent systems.

It is intended for the description of (possibly distributed) reactive, concurrent systems, where the order of events that can occur is of importance. This seems not to add any improvements over other possibilities. We could, presumably, specify ordering of signals using Message Sequence Charts (associated with SDL) or even UML use case diagrams. A naïve reading suggests that it might be better suited to time based protocols, such as TTP/C, than CAN. LOTOS has no explicit notion of time (other than for ordering of events), but research is ongoing to denote temporal properties, allowing time limits for event sequences to be specified, for instance. It seems to offer no advantage over the state based alternatives.

4.7.3. Duration calculus

The Duration Calculus is a formal system for the specification and design of real-time safety-critical systems. It is an extension of Interval Temporal Logic (ITL). The duration calculus is extended to handle continuous time. It is a modal logic for describing and reasoning about the real time behaviour of dynamic systems where states change and are represented by functions from time (represented by real numbers) to Boolean values.

Tool support is limited to validity and proof checkers and a proof assistant, we would clearly need more tool support than this, which seems to militate against its use, unless we find it is particularly valuable for modelling real time behaviour.

5. Conclusion

While it might be desirable to model network and software components in greater detail than a state machine language supports, the capturing of faults such as late message reception is arguably beyond the functional modelling associated with AQQA. Therefore, to get the best from languages such as VHDL or tools such as CANoe, some enhancement of this is needed.

Even quite simple state models can model some simple network failures, such as failure of transmission (complete failure of a terminal, for example) and results obtained so far suggest that such simple models also allow electrical faults to be correctly modelled across systems that use a network. However, this approach is also limited by the functional modelling of systems in AQQA. This approach is capable of modelling most of the network failures in Generic Network FMEA [1], the limitations are imposed by the functional modelling.

It is tempting to suggest that a simple state model fits well with the qualitative simulator, while a more detailed model might be used later in the design lifecycle. Of the state based languages, there is a case to be made for using State Builder, extended if more accurate modelling of messages is found to be beneficial. It seems possible that SDL’s ability to model behaviour in more detail might be valuable. It appears to be a more interesting language than Statemate for this reason.

It is suggested that simply using CANoe to model the network is inappropriate, because of the limitations on functional modelling noted in section 2.2 and also because the tool then closely links the simulation tool to CAN and nothing else. In view if the existence of other protocols, this seems short sighted, though it is appreciated that the experience gained will be of help in linking the simulator with other specialised tools.

The foregoing leads to the idea of a two track approach, in which a state machine language is used with the qualitative simulator, as a first cut solution, and we then devise a “model framework” for system modelling. This framework will allow different tools (such as SDL or CANoe) to be used to model network components, and the functional model to be extended to allow modelling of delays in message reception and the modelling of the system’s environment. A companion report (Proposed approaches to network simulation) describes this proposed route in more detail. As the proposed framework should allow different languages or tools to be used, we need to decide which languages should be tried. SDL and CANoe seem to be the most interesting candidates.

5.1. Future work

This section discusses where this report needs further work. The most important work is to carry out more investigation of CANoe, and other similar tools.

The other thread of this work is to look more closely into how we pass data between the tools themselves. For example, how we arrive at the state for the SDL model’s environment and how we actually pass the messages. It is suggested that this work be concentrated on those languages we expect to use.

This work can be carried on as part of the research still needed to investigate the feasibility of the “model framework” approach and can be done in parallel with development of the simple state based tool. It is hoped that evaluation of this tool will also inform work on the final model framework tool.

6. References

Internal SoftFMEA documents have not been referenced, they are referred to by title in the text. Where copies are not provided, they can be made available. Contact Jon Bell, jpb@aber.ac.uk.

[1] Timothy Thomas, Generic Network FMEA, Ford Motor Company 2001.

