Notes on SDL

Author: Jon Bell

Date: 3/9/01

Ref: SD/BCG/LAN/SDL/01

1. Introduction

This is an attempt to tidy up the notes I started when learning about SDL. It should act as an introductory guide to the language and also as a guide to the sources I consulted while learning about the language. I shall attempt to keep to a clear structure, but as I anticipate adding to these notes as learning continues, the structure may deteriorate. To avoid breaking up the text unduly and needing to repeat references, a brief reference will be used in the text, with a fuller reference in a bibliographic section (“References”) at the end.

2. SDL 

2.1. Introduction and sources consulted

SDL (Specification and Description Language) is a formal, object oriented language defined by the ITU [2] (ITU-T Recommendation Z.100). It is mostly used in specifying and modelling telematic systems, so the possibility exists of using to model CANbus elements of a car system. It remains to be seen whether it is used in preference to, say, a state chart tool, such as StateMate. LOOK HERE!

More on SDL can be found from the sources consulted. The main source used is A. Olsen et al, Systems Engineering using SDL-92 [1]. The formal definition and references re SDL are in ITU Recommendation Z. 100 [2]. A tutorial available off the web, from the IEC [3] covers some similar ground to [1], more briefly. Where I refer to this as the source, I shall call it IEC tutorial. There is a nice looking introductory paper by Rolv Bræk, “SDL Basics” in Computer Networks and ISDN Systems [4]. This paper has a nice brief introduction to SDL graphic notation.

2.2. Uses and limitations

SDL is suitable for modelling reactive discrete systems, such as those that can be represented by state machines. A reactive system is one that is characterised by interaction with events outside the system, i.e. reacting to incoming data (?) and a discrete system is one where interactions are not continuous, the interactions appear as discrete events at discrete points, rather than a constant stream of data. This suggests it should be usable for modelling message passing on a CANbus, as the arrival of a relevant message is a discrete event.

However, SDL is not ideal for modelling systems that use continuous data though it can be used if the continuous data is “quantised” (landmark values decided on?). Examples might be servos that respond to a numerical input (e.g. expressed by angular displacement of the steering wheel in power steering?). This might limit its usefulness for SoftFMEA, but it can (I think) do anything a state chart can do, so probably has a role.

SDL does not specify how messages are exchanged. This can be done using Message Sequence Charts (MSC), which might be used for stating requirements.

SDL is used to build a model of a system, leading to a risk of over specification - including implementation details in the specification model.

It does not handle non-functional properties/requirements, such as a limit on maximum power consumption.

SDL does not necessarily map onto the system’s physical structure. It seems likely that we will need to have some such mapping between the layers of the model as we will want to ensure that a component associated with an SDL process is electrically active, so enabling the process to be run. It remains to be seen whether this imposes undue limitations. As the ECAD tool schematically models the system’s structure, modelling it in terms of components rather than processes, this mapping actually fits well into the overall modelling process.

3. Syntax and structure

SDL uses finite state machines, presented graphically (SDL-GR) or textually (SDL-PR). 

The static structure of an SDL system is made up of blocks and processes, with procedures local to the processes. Both blocks and processes can be defined as types, of which there may be several instances, and from which sub types may inherit.

Behaviour is defined in processes, which are expressed as extended state machines. State charts are not used to define behaviours (at least, not conventionally) but diagrams based more on a transition from state to state, representing a behaviour. These look more like flow charts. These will start with the process in one (or more) states from which this behaviour can be run, and will end with the process in another (or the same) state. Each behaviour is therefore described in more detail than is an event in a state chart. An extended state machine has two additions to a conventional FSM. One is the use of variables for maintaining its history. The other is the use of decisions (tests) in behaviours. If I remember right, StateMate has a similar extension.

The fact that SDL describes behaviour in more detail, together with these extensions allow SDL to describe behaviour that a conventional state transition diagram is not well suited to. For example, suppose we have a bank account that prohibits withdrawals that send the account into debit. The action of making a withdrawal will never cause a transition, the behaviour is defined purely in what might be considered side effects in a state transition diagram.

I have not illustrated or described the diagrams in detail, see references [1] and [4]. These might get added.

An SDL system is assumed to exist within an environment, with which it can interact (by receiving and transmitting signals). This seems closely to match the external properties of component models.

Signal consumption can be made dependent on an enabling condition. This appears to offer a possible mechanism for modelling the need for a component to be electrically active if its behaviours are to be run.

3.1. Processes

As noted above, processes have behaviours, which are described as transitions between states. A behaviour can (will, generally) have inputs and outputs associated with it. An incoming signal will trigger a behaviour. A behaviour is described in a process graph that may include intermediate states, so the parallel between these graphs and transitions in a state transition diagram is not perfect.

It seems reasonable to regard SDL processes as a way of modelling the individual components in a CAN network, where a component will generally have one role, such as a controller or sensor. Clearly a more central CPU might run several processes that will need to be modelled individually. Each process might have several behaviours, each with its own process graph.

We can, I imagine, model a process as coming into existence on the system firing up (e.g. when the ignition fires the electrical circuitry), so it will enter a “passive” sate by default. This idea is illustrated by my attempt at modelling the simple heating example system. A possible alternative is to model the active state as a process, but this means the passive state is not easily fitted into the SDL model. Can we model the CAN itself as a process?

While a process’ behaviour can be likened to a transition in a state chart, there is not an exact parallel as a behaviour might include intermediate states, so would include several transitions.

SDL lacks state charts, as such, as process diagrams describe a behaviour, not a complete finite state machine. Until SDL-2000 there was no support for high level states, but SDL-2000 adds composite states that can model hierarchical state machines. It seems reasonable to suppose that modelling a process individually, rather than in a state machine, was previously felt to answer this.

3.2. Communication

Communication between processes uses signal primitives, which may convey values. They can therefore be used to model CAN messages, at least from this point of view.

A signal is created when a process executes an output and dies when the receiving process receives it as input. Signals can also be created and consumed by the system’s environment. The idea of a signal being destroyed by its receipt doesn’t seem to model broadcast signals well, but surely SDL has been used for this? There is some correspondence on this at [6]. Needs more looking into.

A signal arrives (and is queued) at the input port of the receiving process. A process’ input port is a FIFO queue, with no priorities. Some thought needs to be given as to how this handles messages of different priorities, but it doesn’t seem insoluble.

Communication is asynchronous; the sender carries on, unhindered by whether or not its message has been received and acted on. This suits CANbus quite well. I imagine that if we needed to model a behaviour that sent a message (say an RTR frame) and then had to wait for a response, we could model it as two behaviours, the first ending in a waiting state, and the second starting from that state.

Bræk [4] states that “there is no way in SDL to formally specify the sender of input signals”. I imagine we can get around this by including a “source” attribute that is tested for on receipt, which is presumably what a receiving CAN terminal does? Clearly we need not specify a destination as CAN (and SCP) messages are broadcast.

We can, I think, define a signal type that models a CAN message, should we want to, with suitable fields for source and contents. I guess we can include whatever other fields we want to model, for example to model CAN’s error checking or request (RTR) frames.

Signals are passed along channels at block or system level. Channels can be either instantaneous or have a delay. A delaying channel queues messages, passing them in the order in which they were sent. If two messages are sent to such a channel simultaneously, they are passed in arbitrary order. This might be a problem, as CAN explicitly allows for simultaneous sending of messages, the resultant collision being cleared by arbitration. Output signals can either have a destination (“TO”) or route (“VIA”) specified. If these are not specified then the signal should have a unique destination based on its name. This doesn’t sound much like CAN. It is quite plausible for the same message to be of interest to different receivers, such as wheel rotation both to ABS and traction control. The simple heating example attempts to model this. It remains unclear how we handle this. Though I have not yet seen any examples, I believe SDL has been used to model Ethernet, which has enough similarities to suggest that it might be usable.

3.3. Modelling time

SDL has two predefined data types time and duration. Time refers to a point in time (such as 11-00 am GMT) while duration refers to a time interval. This seems more useful to us.

There is a timer in SDL, which is set with an expiration time. This could conceivably be used to model the acceptable delay in message reception over a network. This expiration time is a duration constant, so it could be set to, say 250 milliseconds. On expiry, a time sends a signal to the input port of the process. A timer can be reset before it expires or while it is in the input port (i.e. it has expired). This construction might not be ideal as we will not necessarily want to branch at a signal being late, we might often merely want to flag the late reception, but ten handle the eventual arrival of the signal in the usual way. Of course in a system where a default value (say) is passed after a set delay, instead of the sensor reading, this mechanism is very apt.

4. SDL-2000

The four yearly update of SDL standard in 1999, discussed in Reed [7], has introduced some new features that might make SDL more suitable for modelling other software based components. The most important of these is the idea of composite states that introduce a hierarchical state mechanism, so a state can be split into sub states. It appears that this does not allow a concurrent set of sub states (like a Statemate “and state”) as processes are apparently assumed not to incorporate concurrency.

SDL-2000 also improves on support for object orientation, by introducing UML like relationships between objects, indeed the standard uses the UML notation. UML sequence diagrams also map to MSCs. There is now a standard (Z.109) that covers SDL combined with UML.

5. Tools

SDL can be used on a small scale by hand, but tool support is needed for decent size projects. Tool vendors include Verilog USA [a] and Telelogic Sweden [b]. A brief description of these tools is on the SDL FAQ list [5]. Telelogic are interested in combining UML ad SDL, the idea apparently being to get around UML’s lack of formality while building on the overlaps between the languages. See their web site. The SDL FAQ has ObjectGeode as Verilog’s product, while Telelogic list ObjectGeode as their product. There are, of course, various ways to account for this inconsistency. Edel told me that Telelogic have bought Verilog (or the other way around?).

6. References

6.1. General references

[1] Olsen, A, Færgemand, O, Møller-Pedersen, B, Reed, R and Smith, J R W, Systems Engineering using SDL-92 3rd impression, pub. North-Holland 1996. It is in the library, catalogue no TA168 S9, or would be if I didn’t have it.

[2] The ITU is on the Web at http://www.itu.int/home/index.html. The standards (“recommendations”) can be purchased from this site.

[3] The IEC tutorial is on the Web at www.iec.org/online/tutorials/sdl/index.html

[4] Bræk R (Sintef Telecom and Informatics, Norway), SDL basics.

Computer Networks and ISDN Systems; Jun 1996; Vol 28 No 12. This is in the library, cat. TK5105.5.A1.C7. This was a special issue devoted to SDL and related subjects. I have copied some interesting looking papers from this and have them in the office.

[5] The SDL FAQ site is at http://www.cs.tcd.ie/FME/original/FAQ/sdl/Master.html.

[6] The SDL forum archive is at http://www.sdl-forum.org/Archives/SDL/

[7] Reed, R: “Notes on SDL-2000 for the new millennium” in Computer Networks Vol. 35, issue 6, May 2001, pp709-720

6.2. Tool vendors

[a] Verilog USA are on the Web at www.verilogusa.com 

[b] Telelogic are on the Web at www.telelogic.se

7. Sources on SDL

Here I list sources that have not been referred to in these notes but which look interesting. I have photocopied the papers marked (*). Computer Networks is in the Physical Sciences Library, PER TK5105.5.A1.C7.

Andersson M, Ek A and Landin N (Telelogic, Sweden)

Utilizing UML in SDL-based development

Computer Networks, (Netherlands), May 2001, Vol 35 No 6 

Start page: 613

Sharon, O and Spratt, M: A CSMA/CD compatible MAC for real-time transmission based on varying collision intervals, in Computer Networks Vol.35, no 2-3, p117, 2001.

*Sarma A (EURESCOM GmbH, Germany), Introduction to SDL-92.

Computer Networks and ISDN Systems; Jun 1996; Vol 28 No 12 

*Verhaard L (Telelogic AB, Sweden), An introduction to Z.105.

Computer Networks and ISDN Systems; Jun 1996; Vol 28 No 12 

Rudolph E (Munich Tech. University, Germany), Graubmann P (Siemens AG, Germany) and Grabowski J (Lübeck Medical University, Germany)

Tutorial on message sequence charts.

Computer Networks and ISDN Systems; Jun 1996; Vol 28 No 12 

*Hogrefe D (Lübeck University, Germany), Validation of SDL systems.

Computer Networks and ISDN Systems; Jun 1996; Vol 28 No 12 

*Cavalli A R (Institut National des Telecommunications, France), Chin B-M (Electronics and Telecommunications Res. Inst., South Korea) and Chon K (KAIST, South Korea)

Testing methods for SDL systems.

Computer Networks and ISDN Systems; Jun 1996; Vol 28 No 12 

Reed R (Telecommunications Software Engng. Ltd.), Methodology for real time systems.

Computer Networks and ISDN Systems; Jun 1996; Vol 28 No 12 

Cheng K E (Royal Melbourne Inst. of Tech., Australia)

A requirements definition and assessment framework for SDL tools.

Computer Networks and ISDN Systems; Jun 1996; Vol 28 No 12

