State transition diagrams

Author: Jon Bell

Date: 7/12/01

Ref: SD/BCG/LAN/SC/01

1. Introduction

These notes describe state machine language and discuss its suitability for the behavioural simulation of network components in automotive systems. The notes will use the Statemate language primarily, as it is an established language with tool support. As AutoSteve (AQQA) already includes a state machine language and tool (“State Builder”) this will also be discussed, if for no better reason than its availability.

This document is intended to allow comparisons of the suitability of these languages and SDL, and other languages we wish to consider, to be drawn. As such this report is a companion to Notes on SDL [1], VHDL and VHDL-AMS [2], Unified Modeling Language [3] and Other simulation languages [4]. The intention is to use these reports to inform the production of the report on simulation languages and tools that is deliverable at the end of SoftFMEA workpackage 1.

There will be a general discussion of state charts, followed by sections describing the extensions and features of the individual languages.

The most important source consulted was Modeling Reactive Systems with Statecharts: the Statemate Approach [5]. AutoSteve itself was used as the source for State Builder. Familiarity with state transition diagrams is assumed, as this document is largely concerned with how well the individual languages will model the behaviour of network components, and what extensions they offer.

UML’s state charts are similar to those described here, but UML is discussed in a separate report, partly because its intended use differs from Statemate’s and partly because it was listed in the project proposal as a possible behavioural simulation language.

2. State charts

A state chart describes the behaviour of an object in terms of states it might be in and how it reacts to events (such as messages) while in the states. A message will typically cause it to move from one state to another (a transition). Such diagrams (or variations) are used in most of the languages considered for SoftFMEA; SDL, UML as well as Statemate. This means that we are arguably more concerned with how useful the various languages’ extensions are in modelling the systems we are interested in. As a state chart describes the behaviour of one object (or class of objects) one extension we need is a method of relating the state charts of different components. SDL uses channels between processes to model this, and UML uses interaction diagrams. Statemate uses flows between “activities”.

All the languages allow the state chart to specify actions the object described by the chart should carry out as part of an event, but both Statemate and State Builder allow actions to be associated with states. This means, of course, that an action can be specified when entering a state from any one of several transitions without repeating the action for each transition.

It is common (usual) for a state chart to allow the hierarchical decomposition of a state into nested lower level states. SDL does not support this (or didn’t until SDL-2000), but Statemate and State Builder both do. Both these languages also have a mechanism for dividing a high level state into concurrent groups of subsidiary states, where to be in the high level state is to be in one state in each concurrent group.

3. The Statemate language

Statemate is a tool marketed by I-Logix that uses an extension of state transition diagrams to model reactive systems. As such it can be seen as an alternative to SDL.

3.1. Views and diagrams available

Statemate uses three types of diagram to model a system, relating to three views of the system. These are: -

· Functional view – what the system does, modelled using an Activity chart.

· Behavioural view – when (and how?) the system does it, modelled using a State chart.

· Structural view – what the system consists of, modelled using a Module chart.

These models are joined by non graphical material held in a “data dictionary”.

The activity chart captures the functionality of the system by describing the processes, functions and objects necessary. It also includes the inputs and outputs of the activities, so models the interactions (flow of information) between the processes and between the system and its environment.

The state chart specifies the behaviour of a system. One state chart may generate a signal as an action, which signal is consumed by another state chart as an event. These signals use the flows defined in the activity diagram.

The module chart shows how the system is to be implemented – what components are to be used. This is defined as “how” in [5], while in the list above I have taken “how” to be concerned with relating function to behaviour.

3.1.1. Activity charts

Activity charts are used to specify the functionality of the system, so they decompose the system in terms of the activities associated with it. They support multi level decomposition of activities, so an activity can contain nested activities. A specific type of activity (a control activity) is used to control its sibling activities. A control activity cannot have child activities and is decomposed into a state chart. In the activity chart it has a distinct symbol, which is also the symbol for a state in a state chart (a rectangle with rounded corners) to emphasise this.

Flows, both of data and control, between the activities are marked by arrows on the activity chart. These can be likened to events in the state chart, and indeed a state chart that represents a control activity will have events corresponding to these flows. This is illustrated in appendix B of Modeling Reactive Systems with Statecharts [5].

3.1.2. State charts

The Statemate state charts have all the extensions described in Section 2, above. They support hierarchical decomposition, by nesting lower level states in a so-called “or” state, and they support concurrent groups of subsidiary states by placing them in different groups in an “and” state.

Actions can be associated with transitions or with either entering or leaving a state. Conditions can be used to divide events, so that one condition an be used to have an event leaving a state, which event is then divided using a second condition, to decide which state the event ends at. This is only equivalent to “and-ing” the conditions, of course, so it is simply a syntactic simplification.

3.1.3. Module charts

Module charts are used to show the structural, as opposed to the logical, architecture of the system. They show the system decomposed into modules representing physical components. Flows of information between the models are also shown, but unlike the flows in an activity chart, there is no distinction between flows of data and control (flow of data is assumed, as it is likely that one module will manage all the control functionality, such as a central processor). These flows do not map to f event on state charts.

It is at least arguable that the distinction between logical architecture (represented by the activity chart) and physical architecture (represented by the module chart) makes Statemate more expressive than SDL, but it remains unclear that this extra expressiveness is valuable when modelling embedded systems where a physical component (such as a sensor) has a well defined logical role.

3.2. Data types

Statemate supports both built in and user defined data types. Built in data types are numerical (integer, real, bit and bit-array) and strings. Integers can be binary, octal or hexadecimal as well as decimal and reals can be expressed exponentially. The usual operators are provided for numerical types. Strings can be compared for equality and there are operators for concatenation and searching for substrings.

Arrays are supported and the user can define complex data types, records and unions. A record is a composition of named components, each of which can be a data item of any type or a condition. In a record all components are present at any time. A union is similar except that any one time only one component is present. Arrays of the same length and type can be compared for equality and so can records of the same user defined type. In these cases equality is tested by components.

Records could be used to model the contents of CAN messages, I imagine, depending on how much detail we want to model them.

3.3. Time in Statemate

Statemate appears not to have an equivalent of SDL’s timer, but an event can be fired after a set delay (timeout). This can be used to model the time limit for receiving a message.

Statemate has two alternative ways of stepping through an execution of a model: -

· Synchronous, in which one step is executed for each time unit.

· Asynchronous, where several execution steps can take place in one unit of time (simultaneously?). How this is handled is implementation dependent. A suggested solution is to take a succession of steps arising from an event until a stable state is reached.

4. State Builder

This is the name given to the tool included as part of AQQA, to allow state charts to be used to model a component’s behaviour. My main source for the material in this section (and other discussion of the tool) is the AQQA on-line Help files.

4.1. Views available

As State Builder is intended for the creation of state machines for describing individual components, it only has its equivalent of Statemate’s “behavioural view” or SDL’s process chart “view”. Its limited scope means there is no need for a higher-level “functional” or “architectural” view. There is therefore no mechanism for explicit communication between state machines.

State Builder can be used to build a hierarchical state machine, with concurrency handled by arranging states in concurrency groups (the equivalent of a Statemate “and” state). Events can be fired on satisfaction of a condition and/or after a delay. Actions can be associated with an events and states. State actions happen on entering the state. Statemate’s state actions are therefore more flexible.

The main shortcoming of State Builder (for SoftFMEA) seems to be the lack of any mechanism for passing signals between components. A state machine can use the input and output properties of another state machine or component, so an event condition could, say, depend on another component’s switch being in the position “closed”. There seems to be no way of explicitly sending a signal to another component. This mechanism does not seem sufficient for modelling of network protocols, though I suspect that a fairly basic model could be built by the clumsy expedient of combining all the terminals, ECU and CAN itself into one rather complex component, which would presumably need to be re built for every application. This would mean that some physical components would be partly modelled within this state machine and partly outside it.

There is a “send” action that allows an event to be sent from one state to another in another part of the same state machine. Unlike an event, this is does not entail leaving the current state. This could be seen as a step towards the communication mechanism we need, but we really need different state machines to talk to each other, like SDL processes can.

4.2. Time

Events can be fired after a delay, with or without some other condition – “fire after <delay>” or “fire after <delay> if <condition>”. There is a qualitative ordering of events in which all instantaneous events are fired before all microsecond events, which are fired before all millisecond events and so on. The order in which events for a given time slot are fired is a race condition, and not determined. It seems reasonable to use the fire after event to model a maximum allowed delay before receiving a CAN message, in the same way as a timeout event could be used in Statemate.

5. Conclusion

Both these tools share the pragmatic advantage of familiarity to the users. State Builder is already incorporated into AQQA, so integration of network modelling could presumably be made quite seamless. However, it seems necessary to add a way of modelling signals to State Builder for this to work. This would then, perhaps, open the facility to abuse, by enabling users to model connections between components’ state charts that should be modelled electrically. Statemate would avoid this problem, of course, being a separate tool. I assume that Statemate is in use by Ford, as they wanted the facility to import Statemate Statecharts into State Builder (my ’prentice piece during my industrial year – does anyone actually use it?).

The lack of any mechanism for communication between components state charts seems to rule out the use of State Builder, while the Statemate activity charts seem less well adapted for modelling signals between components than SDL’s block diagrams.

Both tools lack the facility to model actions in such graphic detail as is possible with SDL process diagrams, but they add the possibility of associating actions with states, which SDL lacks.

Statemate and State Builder both have a concept of time, which should help if we are to model delayed messages.

The notation used by Statemate is more compact than that used by SDL. This might be an important advantage, especially if it is necessary to draw a new state chart (or set of process diagrams) for modelling failure mode behaviour.

6. References

[1] Bell, J: Notes on SDL, SoftFMEA document ref. SD/BCG/LAN/SDL/01

[2] Bell, J: VHDL and VHDL-AMS, SoftFMEA document ref. SD/BCG/LAN/OTH/01

[3] Bell, J: Unified Modeling Language, SoftFMEA document ref. SD/BCG/LAN/OTH/03

[4] Bell, J: Other simulation languages, SoftFMEA document ref. SD/BCG/LAN/OTH/02

[5] Harel, D and Politi, M: Modeling Reactive Systems with Statecharts: the Statemate Approach, pub McGraw-Hill, 1998.

07/12/01

1 of 5

