Comparison of protocols used in the automotive industry

Author: Jon Bell

Date: 13/11/01

Ref: SD/BCG/PR/GEN/03

1. Introduction

In weekly project meeting held on 9/11, it was suggested that I try to identify common features between the different protocols introduced in previous notes, [1], [2]. While this is the starting point for this report, I shall broaden its scope to include a discussion of differences between the protocols, at a fairly abstract level.

The report will be divided into sections for each common feature of or difference between the protocols, and each section will include some discussion of how this feature might be modelled and what difficulties it presents. Individual protocols will not be discussed in detail here. Instead readers are referred to the reports that describe the various protocols and to the sources listed in those reports.

2. Broadcast messages

The most noticeable common feature of all these protocols seems to be that messages are broadcast so all receivers receive the message and can act upon it if they are interested. This is necessary as some sensors will transmit data of interest to several systems, such as road wheel sensor data being of interest to ABS, traction control, instrumentation (speedometer) and possibly others.

This immediately introduces a problem in using SDL to model network message passing, as an SDL “signal” is sent to a specific recipient, though it may be broadcast in the sense of being sent by all available paths, in much the way that an Ethernet message is sent to every node on the network, but is addressed to a specific receiver. In CAN, for example, the transmitter will not know which nodes are interested in the message, it broadcasts it to all and sundry, similarly to a radio broadcast, the message being identified by its source, not its recipient. An SDL signal can have its sender identified.

Of course, in the context of a subsystem, we might be able to dodge this issue, by simply modelling the message being sent from the subsystem’s (only) sender to its (only) receiver, but this fails to model the protocol, and also fails to address situations where the system has several receivers of the same message, such as separate ECUs for each lamp cluster.

3. Undetected errors

According to Comparison CAN vs. ByteFlight vs. TTP/C [3], CAN, Byteflight and TTP/C all use a CRC and all have a hamming distance of 6, so the probability of an undetected error is more or less equal in each case. I imagine that the same applies to Volcano, being based on CAN. The probability is not equal as it will be affected by the length of the message, there being a greater probability of six bits being corrupted in a long message than a short one.

This makes the probability of an undetected error vanishingly (!?) small, but of course if a fault in a sensor, say, causes it to send an incorrect reading, this will be transmitted accurately and so will lead to incorrect behaviour.

4. CSMA and TDMA

The most obvious way of grouping the various protocols is by access control. CAN is CSMA/CD, so messages will be interrupted if they lose arbitration, while TTP/C and Volcano are TDMA, so there will be no collisions to resolve, if the network is working correctly.

Modelling interruptions in CAN looks to be potentially the most difficult problem to solve in modelling these networks, as it non deterministic. It seems plausible to argue that modelling messages coming from different concurrently running sources is impossible on a single processor computer, as even running concurrent processes means that the models of some sources will stop while another process has the CPU, so Java threads are not an ideal solution. My suspicion is that CANOE model message collisions statistically. This is possible, once the source priorities are known. If the frequency with which each source sends (or tries to send) a message is also known, then the network loading can also be established and the statistical likelihood if an interrupt can be arrived at. Volcano uses a similar calculation as a basis for setting the sources’ priorities and periodicities such that collisions are avoided.

Another problem that arises from modelling collisions, whether by modelling different terminals’ behaviours or statistically, is the possibility that the configuration of the network is not known at the time of running the simulation. It seems possible that this might arise if a simulation of a subsystem is to be undertaken early in the design lifecycle of the vehicle. There seems to be no useful way of avoiding this difficulty.

As the TDMA protocols are more deterministic, it seems reasonable to suppose that they will be easier to model. Therefore it should be possible to adapt a modelling approach that is capable of simulating a CSMA protocol for a TDMA one. The main difficulty seems to be the need to model time in some suitable way, but if we are to model message delays, we must model time anyway. There is a separate section on this.

On the other hand, as a TDMA protocol needs some global concept of time, they introduce a new class of failures concerning loss of this idea, for example a TTCAN “time master” failing to send a time reference message. All such protocols will have some fault tolerance in this area, but it might well be that these behaviours need modelling.

5. Late messages

The need to model late messages is common to all protocols, I guess, though a TDMA protocol network that is working correctly should not have any. Clearly if the specification for frequencies of and acceptable waiting times for messages is unattainable, then message delays will be apparent, but I imagine that this will be dealt with by the network specification people, not the electrical engineers, and is capable of being modelled using specialist tools, such as Canoe. The possibility of a fault in a network component leading to unacceptable message delays does seem to be something we might be expected to model, however.

Lateness can only be measured either in very vague terms such as “The fault leads to the message arriving late, and the resulting delay in reacting to a wheel locking might lead to an uncontrollable skid” or in terms of failing to meet the specified message frequency and that the data is older than it should be - for example, “the delay in message reception meant that the time between successive messages was 60 ms instead of 50, and the transmitted datum was produced 35 ms before reception, instead of 25.” Clearly this requires a quantitative modelling of time, and sufficiently detailed knowledge of the network and its terminals to know how much a message might be delayed by, say, being overridden on first transmission. Is there any interest in using a qualitative model of time like that used in Statebuilder to approximate this? It seems possible so to do, if there is any point. I imagine it might be possible to model a delay in terms of, for example, a message taking seconds instead of milliseconds, but this seems rather coarse grained.

6. Tool support

All the interesting networks appear to have tool support available. CAN has CANOE, TTP/C can be modelled using Matlab Simulink and there appear to be tools available for Byteflight.

This suggests that there might be some value in devising a protocol to enable a bridge to any of these tools to be created, alongside the strand of devising our own modelling method, applicable to any network. It seems possible that these approaches might be useful alongside one another, as a network becomes more closely specified, then the specialist modelling tool might have advantages in terms of detail of simulation over a generic approach. There seem to me to be parallels between this idea and using SABER as the simulator in AQQA, later in the design lifecycle.

7. References

[1] Bell, Jon: Notes on CANbus, SoftFMEA document ref. SD/BCG/PR/CAN/01

[2] Bell, Jon: Other automotive industry protocols, SoftFMEA document ref. SD/BCG/PR/GEN/01

[3] TTTech: Comparison CAN vs. Byteflight vs. TTP/C published by TTTech Computertechnik AG. It may be worth pointing out that they are the people behind the exploitation of TTP/C. There is a copy at /dcs/autosteve/SoftFMEA/documents/external/protocols/general/can-byteflight-ttpc.pdf

03/01/02

2 of 3

